login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270140
Numbers k such that k/p_i^r_i == -1 (mod p_i) for all i = 1,...,m, where k = p_1^r_1 .... p_m^r_m.
3
1, 2, 4, 6, 8, 16, 18, 20, 24, 32, 42, 45, 54, 64, 72, 96, 100, 128, 162, 216, 256, 272, 288, 294, 320, 342, 352, 384, 486, 500, 512, 600, 648, 720, 832, 850, 864, 1024, 1120, 1125, 1152, 1320, 1350, 1458, 1512, 1536, 1600, 1620, 1806, 1944, 2048, 2058, 2500, 2592, 2688, 3321, 3456, 3645, 3872, 4096, 4176, 4225, 4374, 4608, 4624, 5120, 5256
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1688 (terms up to 10^10)
Jose María Grau and Antonio M. Oller-Marcen, Power sums over commutative and unitary rings, arXiv:1603.05787 [math.NT], 2016.
EXAMPLE
8000 is a term since 8000 = 2^6 * 5^3 and 8000 == -2^6 (mod 2^7) and 8000 == -5^3 (mod 5^4).
MATHEMATICA
fa = FactorInteger; mas[1]=True; mas[n_] := Union@Table[Mod[n + fa[n][[i, 1]]^ fa[n][[i, 2]], fa[n][[i, 1]]^(fa[n][[i, 2]] + 1)], {i, Length[fa[n]]}] == {0}; Select[Range[10000], mas ]
PROG
(PARI) is(k) = {my(f = factor(k)); for(i = 1, #f~, if((k / f[i, 1]^f[i, 2] + 1) % f[i, 1], return(0))); 1; } \\ Amiram Eldar, Jul 24 2024
CROSSREFS
Cf. A274222.
Sequence in context: A068902 A269332 A077569 * A333020 A325792 A325780
KEYWORD
nonn
AUTHOR
STATUS
approved