|
|
A270138
|
|
Continued fraction expansion of the constant 6/A270121(1)+Sum_{n>=2}1/A270121(n).
|
|
0
|
|
|
0, 1, 6, 2, 7, 32, 112, 10800, 403200, 17418254400, 1755760043520000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A270121 is defined by the following recurrence: if A270121(n)=x(n) then x(n+1)*x(n-1)=x(n)^2*(1+n*x(n)) for n>=1, with x(1)=7, x(2)=112; and for A270124, if A270124(n)=y(n) then y(0)=2 and y(n)=x(n+1)/x(n) for n>=1. Both of these sequences appear in this continued fraction expansion, which defines a transcendental number.
|
|
LINKS
|
Table of n, a(n) for n=0..10.
A. N. W. Hone, Curious continued fractions, nonlinear recurrences and transcendental numbers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.4.
A. N. W. Hone, Continued fractions for some transcendental numbers, arXiv:1509.05019 [math.NT], 2015-2016, Monatsh. Math. DOI: 10.1007/s00605-015-0844-2.
|
|
FORMULA
|
a(2*n+1) = n*A270124(n-1), a(2*n+2) = A270121(n) for n>=1.
|
|
EXAMPLE
|
6/A270121(1)+Sum_{n>=2}1/A270121(n)=6/7+1/112+1/403200+1/1755760043520000+...
=[0;1,6,2,7,32,112,10800,403200,17418254400,...]
=[0;1,6,A270124(0),A270121(1),2*A270124(1),A270121(2),3*A270124(2),A270121(3),4*A270124(3),...] (continued fraction).
|
|
CROSSREFS
|
Cf. A112373, A114550, A114551, A114552.
Sequence in context: A244381 A307086 A021090 * A177889 A086744 A242301
Adjacent sequences: A270135 A270136 A270137 * A270139 A270140 A270141
|
|
KEYWORD
|
nonn,cofr
|
|
AUTHOR
|
Andrew Hone, Mar 11 2016
|
|
STATUS
|
approved
|
|
|
|