This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268598 Expansion of x^5*(4 - 5*x)/(1 - 2*x)^4. 4
 0, 0, 0, 0, 0, 4, 27, 120, 440, 1440, 4368, 12544, 34560, 92160, 239360, 608256, 1517568, 3727360, 9031680, 21626880, 51249152, 120324096, 280166400, 647495680, 1486356480, 3391094784, 7693402112, 17364418560, 39007027200, 87241523200, 194330492928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly two east steps below y = x - 1 and exactly one east step above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016. Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16). FORMULA G.f.: x^5*(4 - 5*x)/(1 - 2*x)^4. From Colin Barker, Feb 08 2016: (Start) a(n) = 2^(n-7)*(n-4)*(n-3)*(n+3) for n>2. a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. (End) PROG (PARI) concat(vector(5), Vec((4-5*x)*x^5/(1-2*x)^4 + O(x^40))) \\ Michel Marcus, Feb 08 2016 CROSSREFS Cf. A268462, A268586, A268587. Sequence in context: A171469 A267685 A190584 * A267886 A034512 A240194 Adjacent sequences:  A268595 A268596 A268597 * A268599 A268600 A268601 KEYWORD nonn,easy AUTHOR Ran Pan, Feb 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 19:52 EDT 2019. Contains 327981 sequences. (Running on oeis4.)