login
A268340
Characteristic function of the prime powers p^k, k >= 2.
6
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
COMMENTS
Mobius transform of A046660. - Isaac Saffold, Dec 14 2017
FORMULA
a(n) = Sum_{d|n} (mobius(n/d)*(bigomega(d) - omega(d))) - Isaac Saffold, Dec 14 2017
MAPLE
N:= 1000: # to get a(1)...a(N)
V:= Vector(N):
for p in select(isprime, [2, seq(i, i=3..isqrt(N), 2)]) do
for k from 2 to floor(log[p](N)) do
V[p^k]:= 1
od od:
convert(V, list); # Robert Israel, Dec 14 2017
MATHEMATICA
Table[Boole@ And[PrimePowerQ@ n, ! PrimeQ@ n], {n, 105}] (* Michael De Vlieger, Feb 02 2016 *)
Table[If[!PrimeQ[n]&&PrimePowerQ[n], 1, 0], {n, 130}] (* Harvey P. Dale, Jan 20 2019 *)
PROG
(PARI) a(n)=my(b); ispower(n, , &b)&&isprime(b)
(PARI) first(n) = my(res = vector(n)); forprime(p = 2, sqrtint(n), for(i = 2, logint(n, p), res[p^i] = 1)); res \\ David A. Corneth, Nov 03 2017
(Python)
from sympy import primefactors
def A268340(n): return int(len(s:=primefactors(n)) == 1 and n>s[0]) # Chai Wah Wu, Mar 31 2023
CROSSREFS
Characteristic function of A246547.
Sequence in context: A284508 A347519 A160351 * A355453 A336356 A319988
KEYWORD
nonn,easy
AUTHOR
Jeppe Stig Nielsen, Feb 02 2016
EXTENSIONS
More terms from Antti Karttunen, Nov 03 2017
STATUS
approved