Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Mar 31 2023 14:14:51
%S 0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,
%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
%U 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
%N Characteristic function of the prime powers p^k, k >= 2.
%C Mobius transform of A046660. - _Isaac Saffold_, Dec 14 2017
%H Antti Karttunen, <a href="/A268340/b268340.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(n) = Sum_{d|n} (mobius(n/d)*(bigomega(d) - omega(d))) - _Isaac Saffold_, Dec 14 2017
%p N:= 1000: # to get a(1)...a(N)
%p V:= Vector(N):
%p for p in select(isprime, [2,seq(i,i=3..isqrt(N),2)]) do
%p for k from 2 to floor(log[p](N)) do
%p V[p^k]:= 1
%p od od:
%p convert(V,list); # _Robert Israel_, Dec 14 2017
%t Table[Boole@ And[PrimePowerQ@ n, ! PrimeQ@ n], {n, 105}] (* _Michael De Vlieger_, Feb 02 2016 *)
%t Table[If[!PrimeQ[n]&&PrimePowerQ[n],1,0],{n,130}] (* _Harvey P. Dale_, Jan 20 2019 *)
%o (PARI) a(n)=my(b);ispower(n,,&b)&&isprime(b)
%o (PARI) first(n) = my(res = vector(n)); forprime(p = 2, sqrtint(n), for(i = 2, logint(n, p), res[p^i] = 1)); res \\ _David A. Corneth_, Nov 03 2017
%o (Python)
%o from sympy import primefactors
%o def A268340(n): return int(len(s:=primefactors(n)) == 1 and n>s[0]) # _Chai Wah Wu_, Mar 31 2023
%Y Characteristic function of A246547.
%Y Cf. A069513, A010055, A075802, A112526.
%K nonn,easy
%O 1
%A _Jeppe Stig Nielsen_, Feb 02 2016
%E More terms from _Antti Karttunen_, Nov 03 2017