login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267797
Lucas numbers of the form (x^3 + y^3) / 2 where x and y are distinct positive integers.
3
76, 1364, 24476, 439204, 7881196, 141422324, 2537720636, 45537549124, 817138163596, 14662949395604, 263115950957276, 4721424167835364, 84722519070079276, 1520283919093591604, 27280388024614569596, 489526700523968661124, 8784200221406821330636
OFFSET
1,1
COMMENTS
Lucas numbers that are the averages of 2 distinct positive cubes.
Inspired by relation between sequence A024851 and A188378.
Corresponding indices are 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, ...
6*n + 3 is the corresponding form of indices.
Corresponding y values are listed by A188378, for n > 0. Note that corresponding x values are A188378(n) - 2, for n > 0.
FORMULA
a(n) = A000032(A016945(n)), for n > 0.
a(n) = A188378(n)^3 - 3*A188378(n)^2 + 6*A188378(n) - 4, for n > 0.
From Colin Barker, Jan 24 2016: (Start)
a(n) = (9+4*sqrt(5))^(-n)*(2-sqrt(5)+(2+sqrt(5))*(9+4*sqrt(5))^(2*n)).
a(n) = 18*a(n-1)-a(n-2) for n>2.
G.f.: 4*x*(19-x) / (1-18*x+x^2).
(End)
EXAMPLE
Lucas number 76 is a term because 76 = (3^3 + 5^3) / 2.
Lucas number 1364 is a term because 1364 = (10^3 + 12^3) / 2.
Lucas number 24476 is a term because 24476 = (28^3 + 30^3) / 2.
Lucas number 439204 is a term because 439204 = (75^3 + 77^3) / 2.
Lucas number 7881196 is a term because 7881196 = (198^3 + 200^3) / 2.
Lucas number 141422324 is a term because 141422324 = (520^3 + 522^3) / 2.
MATHEMATICA
Table[Fibonacci[6 n + 4] + Fibonacci[6 n + 2], {n, 1, 20}] (* Vincenzo Librandi, Jan 24 2016 *)
LinearRecurrence[{18, -1}, {76, 1364}, 20] (* Harvey P. Dale, Jul 23 2024 *)
PROG
(PARI) l(n) = fibonacci(n+1) + fibonacci(n-1);
is(n) = for(i=ceil(sqrtn(n\2+1, 3)), sqrtn(n-.5, 3), ispower(n-i^3, 3) && return(1));
for(n=1, 120, if(is(2*l(n)), print1(l(n), ", ")));
(PARI) a(n) = ((5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n)^3 + (5*fibonacci(n)*fibonacci(n+1) - 1 + (-1)^n)^3) / 2;
(PARI) a(n) = (fibonacci(6*n+4) + fibonacci(6*n+2));
(PARI) Vec(4*x*(19-x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
(Magma) [Fibonacci(6*n+4)+Fibonacci(6*n+2): n in [1..20]]; // Vincenzo Librandi, Jan 24 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Jan 24 2016
STATUS
approved