|
|
A267800
|
|
Triangle read by rows giving successive states of cellular automaton generated by "Rule 213" initiated with a single ON (black) cell.
|
|
5
|
|
|
1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0
|
|
COMMENTS
|
Row n has length 2n+1.
|
|
LINKS
|
Robert Price, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Index entries for sequences related to cellular automata
Index to Elementary Cellular Automata
|
|
EXAMPLE
|
The first ten rows:
1
0 1 1
1 0 0 1 1
1 1 1 0 0 1 1
1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
|
|
MATHEMATICA
|
rule=213; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Flatten[catri] (* Triangle Representation of CA *)
|
|
CROSSREFS
|
Cf. A267801, A267802.
Cf. A267537 (central column), A267533 (row reversals).
Sequence in context: A307243 A120530 A078616 * A322980 A267053 A257477
Adjacent sequences: A267797 A267798 A267799 * A267801 A267802 A267803
|
|
KEYWORD
|
nonn,tabf,easy
|
|
AUTHOR
|
Robert Price, Jan 20 2016
|
|
STATUS
|
approved
|
|
|
|