login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267796 a(n) = (n+1)*4^(2n+1). 3
4, 128, 3072, 65536, 1310720, 25165824, 469762048, 8589934592, 154618822656, 2748779069440, 48378511622144, 844424930131968, 14636698788954112, 252201579132747776, 4323455642275676160, 73786976294838206464, 1254378597012249509888, 21250649172913403461632 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The partial sums of A001246(n)/a(n) converge absolutely. This series is also the hypergeometric function 1/4 * 4F3(1/2,1/2,1,1;2,2,2;1). - Ralf Steiner, Feb 09 2016

LINKS

Colin Barker, Table of n, a(n) for n = 0..800

Index entries for linear recurrences with constant coefficients, signature (32, -256).

FORMULA

a(n) = A013709(n)*(n+1).

From Colin Barker, Mar 23 2017: (Start)

G.f.: 4 / (1 - 16*x)^2.

a(n) = 32*a(n-1) - 256*a(n-2) for n>1.

(End)

EXAMPLE

For n=3, a(3)=65536.

MATHEMATICA

Table[(n + 1) 4^(2 n + 1), {n, 0, 20}] (* Vincenzo Librandi, Feb 10 2016 *)

PROG

(PARI) a(n) = (n+1)*4^(2*n+1); \\ Michel Marcus, Jan 28 2016

(PARI) Vec(4 / (1 - 16*x)^2 + O(x^30)) \\ Colin Barker, Mar 23 2017

(MAGMA) [(n+1)*4^(2*n+1): n in [0..45]]; // Vincenzo Librandi, Feb 10 2016

CROSSREFS

Cf. A013709, A267982, A001246.

Sequence in context: A270959 A291851 A128790 * A013823 A321233 A130318

Adjacent sequences:  A267793 A267794 A267795 * A267797 A267798 A267799

KEYWORD

nonn,easy

AUTHOR

Ralf Steiner, Jan 24 2016

EXTENSIONS

More terms from Michel Marcus, Jan 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 08:46 EDT 2021. Contains 343995 sequences. (Running on oeis4.)