Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jul 23 2024 12:38:17
%S 76,1364,24476,439204,7881196,141422324,2537720636,45537549124,
%T 817138163596,14662949395604,263115950957276,4721424167835364,
%U 84722519070079276,1520283919093591604,27280388024614569596,489526700523968661124,8784200221406821330636
%N Lucas numbers of the form (x^3 + y^3) / 2 where x and y are distinct positive integers.
%C Lucas numbers that are the averages of 2 distinct positive cubes.
%C Inspired by relation between sequence A024851 and A188378.
%C Corresponding indices are 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, ...
%C 6*n + 3 is the corresponding form of indices.
%C Corresponding y values are listed by A188378, for n > 0. Note that corresponding x values are A188378(n) - 2, for n > 0.
%H Colin Barker, <a href="/A267797/b267797.txt">Table of n, a(n) for n = 1..750</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-1).
%F a(n) = A000032(A016945(n)), for n > 0.
%F a(n) = A188378(n)^3 - 3*A188378(n)^2 + 6*A188378(n) - 4, for n > 0.
%F From _Colin Barker_, Jan 24 2016: (Start)
%F a(n) = (9+4*sqrt(5))^(-n)*(2-sqrt(5)+(2+sqrt(5))*(9+4*sqrt(5))^(2*n)).
%F a(n) = 18*a(n-1)-a(n-2) for n>2.
%F G.f.: 4*x*(19-x) / (1-18*x+x^2).
%F (End)
%e Lucas number 76 is a term because 76 = (3^3 + 5^3) / 2.
%e Lucas number 1364 is a term because 1364 = (10^3 + 12^3) / 2.
%e Lucas number 24476 is a term because 24476 = (28^3 + 30^3) / 2.
%e Lucas number 439204 is a term because 439204 = (75^3 + 77^3) / 2.
%e Lucas number 7881196 is a term because 7881196 = (198^3 + 200^3) / 2.
%e Lucas number 141422324 is a term because 141422324 = (520^3 + 522^3) / 2.
%t Table[Fibonacci[6 n + 4] + Fibonacci[6 n + 2], {n, 1, 20}] (* _Vincenzo Librandi_, Jan 24 2016 *)
%t LinearRecurrence[{18,-1},{76,1364},20] (* _Harvey P. Dale_, Jul 23 2024 *)
%o (PARI) l(n) = fibonacci(n+1) + fibonacci(n-1);
%o is(n) = for(i=ceil(sqrtn(n\2+1, 3)), sqrtn(n-.5, 3), ispower(n-i^3, 3) && return(1));
%o for(n=1, 120, if(is(2*l(n)), print1(l(n), ", ")));
%o (PARI) a(n) = ((5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n)^3 + (5*fibonacci(n)*fibonacci(n+1) - 1 + (-1)^n)^3) / 2;
%o (PARI) a(n) = (fibonacci(6*n+4) + fibonacci(6*n+2));
%o (PARI) Vec(4*x*(19-x)/(1-18*x+x^2) + O(x^20)) \\ _Colin Barker_, Jan 24 2016
%o (Magma) [Fibonacci(6*n+4)+Fibonacci(6*n+2): n in [1..20]]; // _Vincenzo Librandi_, Jan 24 2016
%Y Cf. A000032, A016945, A024670, A024851, A049629, A188378.
%K nonn,easy
%O 1,1
%A _Altug Alkan_, Jan 24 2016