OFFSET
1,1
COMMENTS
Positive integers that have exactly five odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 5 subparts. - Omar E. Pol, Dec 28 2016
Also numbers that can be expressed as the sum of k > 1 consecutive positive integers in exactly 4 ways; e.g., 81 = 40+41 = 26+27+28 = 11+12+13+14+15+16 = 5+6+7+8+9+10+11+12+13. - Julie Jones, Aug 13 2018
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
A001227(a(n)) = 5.
Sum_{n>=1} 1/a(n) = 2 * P(4) - 1/8 = 0.00289017370127..., where P(4) is the value of the prime zeta function at 4 (A085964). - Amiram Eldar, Sep 16 2024
PROG
(PARI) isok(n) = sumdiv(n, d, (d%2)) == 5; \\ Michel Marcus, Apr 03 2016
(GAP) A:=List([1..700000], n->DivisorsInt(n));;
B:=List([1..Length(A)], i->Filtered(A[i], IsOddInt));;
a:=Filtered([1..Length(B)], i->Length(B[i])=5); # Muniru A Asiru, Aug 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 03 2016
EXTENSIONS
More terms from Michel Marcus, Apr 03 2016
STATUS
approved