OFFSET
1,1
COMMENTS
Positive integers that have exactly 10 odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 10 subparts. - Omar E. Pol, Dec 29 2016
Numbers that can be formed in exactly 9 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..5000
FORMULA
A001227(a(n)) = 10.
MATHEMATICA
Select[Range@ 8125, Length@ Select[Divisors@ #, OddQ] == 10 &] (* Michael De Vlieger, Dec 30 2016 *)
PROG
(PARI) isok(n) = sumdiv(n, d, (d%2)) == 10; \\ after Michel Marcus
(GAP) A:=List([1..10000], n->DivisorsInt(n));; B:=List([1..Length(A)], i->Filtered(A[i], IsOddInt));;
a:=Filtered([1..Length(B)], i->Length(B[i])=10); # Muniru A Asiru, Aug 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 03 2016
STATUS
approved