login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267891
Numbers with 8 odd divisors.
8
105, 135, 165, 189, 195, 210, 231, 255, 270, 273, 285, 297, 330, 345, 351, 357, 375, 378, 385, 390, 399, 420, 429, 435, 455, 459, 462, 465, 483, 510, 513, 540, 546, 555, 561, 570, 594, 595, 609, 615, 621, 627, 645, 651, 660, 663, 665, 690, 702, 705, 714, 715, 741, 750, 756, 759, 770, 777, 780, 783, 795, 798, 805, 837
OFFSET
1,1
COMMENTS
Positive integers that have exactly eight odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 8 subparts. - Omar E. Pol, Dec 29 2016
Numbers n such that A000265(n) has prime signature {7} or {3,1} or {1,1,1}, i.e., is in A092759 or A065036 or A007304. - Robert Israel, Mar 15 2018
Numbers that can be formed in exactly 7 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
LINKS
FORMULA
A001227(a(n)) = 8.
MAPLE
filter:= proc(n) local r;
r:= n/2^padic:-ordp(n, 2);
numtheory:-tau(r)=8
end proc:
select(filter, [$1..1000]); # Robert Israel, Mar 15 2018
MATHEMATICA
Select[Range@ 840, Length@ Select[Divisors@ #, OddQ] == 8 &] (* Michael De Vlieger, Dec 30 2016 *)
PROG
(PARI) isok(n) = sumdiv(n, d, (d%2)) == 8; \\ after Michel Marcus
(Magma) [n: n in [1..1000] | #[d: d in Divisors(n) | IsOdd(d)] eq 8]; // Bruno Berselli, Apr 04 2016
CROSSREFS
Column 8 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, this sequence, A267892, A267893.
Sequence in context: A095643 A206265 A253022 * A097217 A115935 A069702
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 03 2016
STATUS
approved