login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with 5 odd divisors.
8

%I #43 Sep 16 2024 02:10:17

%S 81,162,324,625,648,1250,1296,2401,2500,2592,4802,5000,5184,9604,

%T 10000,10368,14641,19208,20000,20736,28561,29282,38416,40000,41472,

%U 57122,58564,76832,80000,82944,83521,114244,117128,130321,153664,160000,165888,167042,228488,234256,260642,279841

%N Numbers with 5 odd divisors.

%C Positive integers that have exactly five odd divisors.

%C Numbers k such that the symmetric representation of sigma(k) has 5 subparts. - _Omar E. Pol_, Dec 28 2016

%C Also numbers that can be expressed as the sum of k > 1 consecutive positive integers in exactly 4 ways; e.g., 81 = 40+41 = 26+27+28 = 11+12+13+14+15+16 = 5+6+7+8+9+10+11+12+13. - _Julie Jones_, Aug 13 2018

%H Amiram Eldar, <a href="/A267696/b267696.txt">Table of n, a(n) for n = 1..10000</a>

%F A001227(a(n)) = 5.

%F Sum_{n>=1} 1/a(n) = 2 * P(4) - 1/8 = 0.00289017370127..., where P(4) is the value of the prime zeta function at 4 (A085964). - _Amiram Eldar_, Sep 16 2024

%o (PARI) isok(n) = sumdiv(n, d, (d%2)) == 5; \\ _Michel Marcus_, Apr 03 2016

%o (GAP) A:=List([1..700000],n->DivisorsInt(n));;

%o B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));;

%o a:=Filtered([1..Length(B)],i->Length(B[i])=5); # _Muniru A Asiru_, Aug 14 2018

%Y Column 5 of A266531.

%Y Cf. A001227, A030514, A038547, A085964, A236104, A237593, A279387.

%Y Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, this sequence, A230577, A267697, A267891, A267892, A267893.

%K nonn

%O 1,1

%A _Omar E. Pol_, Apr 03 2016

%E More terms from _Michel Marcus_, Apr 03 2016