login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264828
Nonprimes that are not twice a prime.
11
1, 8, 9, 12, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 104
OFFSET
1,2
COMMENTS
Except for the initial 1, if n is in the sequence, so is k*n for all k > 1. So the odd semiprimes (A046315) and numbers of the form 4*p (A001749) where p is prime are core subsequences which give the initial terms of arithmetic progressions in this sequence. - Altug Alkan, Nov 29 2015
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 [Terms 1 to 10000 from Robert Israel.]
FORMULA
a(n) = A009188(n-2) for n>=3. - Alois P. Heinz, Oct 17 2024
MAPLE
Primes, Nonprimes:= selectremove(isprime, {$1..1000}):
sort(convert(Nonprimes minus map(`*`, Primes, 2), list)); # Robert Israel, Nov 30 2015
MATHEMATICA
Select[Range@ 104, And[! PrimeQ@ #, Or[PrimeOmega@ # != 2, OddQ@ #]] &] (* Michael De Vlieger, Nov 27 2015 *)
Select[Range@110, Nor[PrimeQ[#], PrimeQ[#/2]] &] (* Vincenzo Librandi, Jan 22 2016 *)
PROG
(PARI) print1(1, ", "); forcomposite(n=1, 1e3, if(n % 2 == 1 || !isprime(n/2), print1(n, ", "))) \\ Altug Alkan, Dec 01 2015
(Python)
from itertools import count, islice
from sympy import isprime
def A264828_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:not (isprime(n) or (n&1^1 and isprime(n>>1))), count(max(startvalue, 1)))
A264828_list = list(islice(A264828_gen(), 20)) # Chai Wah Wu, Mar 26 2024
(Python)
from sympy import primepi
def A264828(n):
def f(x): return int(n+primepi(x)+primepi(x>>1))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Oct 17 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Nov 26 2015
STATUS
approved