Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #62 Oct 17 2024 17:44:20
%S 1,8,9,12,15,16,18,20,21,24,25,27,28,30,32,33,35,36,39,40,42,44,45,48,
%T 49,50,51,52,54,55,56,57,60,63,64,65,66,68,69,70,72,75,76,77,78,80,81,
%U 84,85,87,88,90,91,92,93,95,96,98,99,100,102,104
%N Nonprimes that are not twice a prime.
%C Except for the initial 1, if n is in the sequence, so is k*n for all k > 1. So the odd semiprimes (A046315) and numbers of the form 4*p (A001749) where p is prime are core subsequences which give the initial terms of arithmetic progressions in this sequence. - _Altug Alkan_, Nov 29 2015
%H N. J. A. Sloane, <a href="/A264828/b264828.txt">Table of n, a(n) for n = 1..20000</a> [Terms 1 to 10000 from _Robert Israel_.]
%F a(n) = A009188(n-2) for n>=3. - _Alois P. Heinz_, Oct 17 2024
%p Primes, Nonprimes:= selectremove(isprime, {$1..1000}):
%p sort(convert(Nonprimes minus map(`*`,Primes,2),list)); # _Robert Israel_, Nov 30 2015
%t Select[Range@ 104, And[! PrimeQ@ #, Or[PrimeOmega@ # != 2, OddQ@ #]] &] (* _Michael De Vlieger_, Nov 27 2015 *)
%t Select[Range@110, Nor[PrimeQ[#], PrimeQ[#/2]] &] (* _Vincenzo Librandi_, Jan 22 2016 *)
%o (PARI) print1(1, ", "); forcomposite(n=1, 1e3, if(n % 2 == 1 || !isprime(n/2), print1(n, ", "))) \\ _Altug Alkan_, Dec 01 2015
%o (Python)
%o from itertools import count, islice
%o from sympy import isprime
%o def A264828_gen(startvalue=1): # generator of terms >= startvalue
%o return filter(lambda n:not (isprime(n) or (n&1^1 and isprime(n>>1))),count(max(startvalue,1)))
%o A264828_list = list(islice(A264828_gen(),20)) # _Chai Wah Wu_, Mar 26 2024
%o (Python)
%o from sympy import primepi
%o def A264828(n):
%o def f(x): return int(n+primepi(x)+primepi(x>>1))
%o m, k = n, f(n)
%o while m != k: m, k = k, f(k)
%o return m # _Chai Wah Wu_, Oct 17 2024
%Y Cf. A009188, A018252, A100484.
%K nonn,easy
%O 1,2
%A _Giovanni Teofilatto_, Nov 26 2015