login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263451
a(n) is the largest anagram of 2*a(n-1), a(1)=1.
14
1, 2, 4, 8, 61, 221, 442, 884, 8761, 75221, 544210, 8842100, 87642100, 875422100, 8754421000, 88754210000, 877542100000, 8755421000000, 87542110000000, 875422100000000, 8754421000000000, 88754210000000000, 877542100000000000, 8755421000000000000
OFFSET
1,2
COMMENTS
For large n, a(n)/a(n-1) ~ 10.
FORMULA
a(n) >= A036447(n).
From Alois P. Heinz, Oct 19 2015: (Start)
G.f.: x*(99990000000*x^18 +86679000000*x^17 -333332100000*x^16 -13533210000*x^15 +6579000*x^14 +8577900*x^13 +354357900*x^12 +212157900*x^11 +60455790*x^10 +7924779*x^9 +3991239*x^8 +1999116*x^7 +999558*x^6 -221*x^5 -61*x^4 -8*x^3 -4*x^2 -2*x -1) / ((10*x-1) *(1+10*x) *(100*x^2+10*x+1) *(100*x^2-10*x+1)).
a(n) = 10^6 * a(n-6) for n >= 20. (End)
a(n+1) = A004186(2*a(n)). - Reinhard Zumkeller, Oct 19 2015
MATHEMATICA
s={1, 2, 4, 8}; a=8; Do[b=FromDigits[Reverse[Sort[IntegerDigits[2*a]]]]; AppendTo[s, a=b], {20}]; s
NestList[FromDigits[ReverseSort[IntegerDigits[2 #]]]&, 1, 30] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, May 17 2019 *)
PROG
(Magma) [n eq 1 select 1 else Seqint(Sort(Intseq(2*Self(n-1)))): n in [1..30]]; // Bruno Berselli, Oct 19 2015
(Haskell)
a263451 n = a263451_list !! (n-1)
a263451_list = iterate (a004186 . (* 2)) 1
-- Reinhard Zumkeller, Oct 19 2015
CROSSREFS
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Sequence in context: A018482 A036447 A371966 * A339951 A069027 A362343
KEYWORD
nonn,base,easy
AUTHOR
Zak Seidov, Oct 18 2015
STATUS
approved