OFFSET
0,2
COMMENTS
In contrast to A321542, this sequence increases forever.
Proof: The terms from a(7) onwards can be described as follows:
3 times the number 9 (2k times) 6552 is 2 9 (2k-1 times) 89656 which becomes 9 (2k times) 86652 when sorted;
then 3 times the number 9 (2k times) 86652 is 2 9 (2k times) 59956 which becomes 9 (2k+2 times) 6552 when sorted. QED
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..900
Index entries for linear recurrences with constant coefficients, signature (10,1,-10).
FORMULA
From Chai Wah Wu, Nov 20 2018: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n > 9.
G.f.: (118800*x^9 + 8910*x^8 + 8811*x^7 + 12321*x^6 + 2439*x^5 - 78*x^4 - 11*x^3 - 22*x^2 - 7*x + 1)/((x - 1)*(x + 1)*(10*x - 1)). (End)
MATHEMATICA
NestList[FromDigits[ReverseSort[IntegerDigits[3*#]]] &, 1, 25] (* Paolo Xausa, Aug 02 2024 *)
CROSSREFS
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 19 2018
STATUS
approved