login
A263450
Smallest integer k>0 such that there is at least one zero in the decimal representation of prime(n)^k.
1
10, 10, 8, 4, 5, 6, 7, 4, 6, 4, 6, 3, 5, 3, 2, 2, 3, 5, 3, 2, 3, 3, 5, 3, 2, 1, 1, 1, 1, 4, 3, 3, 6, 4, 2, 2, 4, 3, 5, 4, 2, 4, 4, 3, 2, 2, 5, 3, 3, 3, 6, 4, 2, 2, 2, 4, 3, 3, 5, 3, 2, 4, 1, 3, 3, 2, 2, 6, 2, 2, 2, 4, 3, 5, 4, 6, 4, 2, 1, 1, 3, 4, 3, 5, 3, 3, 2, 2, 5
OFFSET
1,1
COMMENTS
Conjecture: there are an infinite number of ones in the sequence.
Corresponding values of prime(n)^k: 1024, 59049, 390625, 2401, 161051, 4826809, 410338673, 130321 (not yet in OEIS).
From Robert Israel, Oct 19 2015: (Start)
By Dirichlet's theorem there are infinitely many n for which prime(n) == 1 (mod 100), and these all have a(n) = 1.
All a(n) <= 20, since every x coprime to 10 has x^20 == 1 (mod 100). (End)
LINKS
FORMULA
a(n) = A071531(prime(n)). - Michel Marcus, Oct 21 2015
MAPLE
f:= proc(m) local k;
for k from 1 do
if has(convert(m^k, base, 10), 0) then return k fi
od
end proc:
seq(f(ithprime(i)), i=1..1000); # Robert Israel, Oct 19 2015
MATHEMATICA
Reap[Do[p=Prime[n]; k=1; While[Min[IntegerDigits[p^k]]>0, k++]; Sow[k], {n, 1, 200}]][[2, 1]]
PROG
(PARI) a(n) = {p = prime(n); k = 1; while (vecmin(digits(p^k)), k++); k; } \\ Michel Marcus, Oct 21 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Oct 18 2015
STATUS
approved