login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263450 Smallest integer k>0 such that there is at least one zero in the decimal representation of prime(n)^k. 1
10, 10, 8, 4, 5, 6, 7, 4, 6, 4, 6, 3, 5, 3, 2, 2, 3, 5, 3, 2, 3, 3, 5, 3, 2, 1, 1, 1, 1, 4, 3, 3, 6, 4, 2, 2, 4, 3, 5, 4, 2, 4, 4, 3, 2, 2, 5, 3, 3, 3, 6, 4, 2, 2, 2, 4, 3, 3, 5, 3, 2, 4, 1, 3, 3, 2, 2, 6, 2, 2, 2, 4, 3, 5, 4, 6, 4, 2, 1, 1, 3, 4, 3, 5, 3, 3, 2, 2, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: there are an infinite number of ones in the sequence.

Corresponding values of prime(n)^k: 1024, 59049, 390625, 2401, 161051, 4826809, 410338673, 130321 (not yet in OEIS).

From Robert Israel, Oct 19 2015: (Start)

By Dirichlet's theorem there are infinitely many n for which prime(n) == 1 (mod 100), and these all have a(n) = 1.

All a(n) <= 20, since every x coprime to 10 has x^20 == 1 (mod 100). (End)

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A071531(prime(n)). - Michel Marcus, Oct 21 2015

MAPLE

f:= proc(m) local k;

for k from 1 do

     if has(convert(m^k, base, 10), 0) then return k fi

   od

end proc:

seq(f(ithprime(i)), i=1..1000); # Robert Israel, Oct 19 2015

MATHEMATICA

Reap[Do[p=Prime[n]; k=1; While[Min[IntegerDigits[p^k]]>0, k++]; Sow[k], {n, 1, 200}]][[2, 1]]

PROG

(PARI) a(n) = {p = prime(n); k = 1; while (vecmin(digits(p^k)), k++); k; } \\ Michel Marcus, Oct 21 2015

CROSSREFS

Cf. A062584, A071531, A103662, A103663.

Sequence in context: A276467 A112120 A099401 * A087028 A145279 A103708

Adjacent sequences:  A263447 A263448 A263449 * A263451 A263452 A263453

KEYWORD

nonn,base

AUTHOR

Zak Seidov, Oct 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 9 04:34 EDT 2020. Contains 335538 sequences. (Running on oeis4.)