login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the largest anagram of 2*a(n-1), a(1)=1.
14

%I #19 Sep 08 2022 08:46:14

%S 1,2,4,8,61,221,442,884,8761,75221,544210,8842100,87642100,875422100,

%T 8754421000,88754210000,877542100000,8755421000000,87542110000000,

%U 875422100000000,8754421000000000,88754210000000000,877542100000000000,8755421000000000000

%N a(n) is the largest anagram of 2*a(n-1), a(1)=1.

%C For large n, a(n)/a(n-1) ~ 10.

%F a(n) >= A036447(n).

%F From _Alois P. Heinz_, Oct 19 2015: (Start)

%F G.f.: x*(99990000000*x^18 +86679000000*x^17 -333332100000*x^16 -13533210000*x^15 +6579000*x^14 +8577900*x^13 +354357900*x^12 +212157900*x^11 +60455790*x^10 +7924779*x^9 +3991239*x^8 +1999116*x^7 +999558*x^6 -221*x^5 -61*x^4 -8*x^3 -4*x^2 -2*x -1) / ((10*x-1) *(1+10*x) *(100*x^2+10*x+1) *(100*x^2-10*x+1)).

%F a(n) = 10^6 * a(n-6) for n >= 20. (End)

%F a(n+1) = A004186(2*a(n)). - _Reinhard Zumkeller_, Oct 19 2015

%t s={1,2,4,8}; a=8; Do[b=FromDigits[Reverse[Sort[IntegerDigits[2*a]]]]; AppendTo[s,a=b],{20}]; s

%t NestList[FromDigits[ReverseSort[IntegerDigits[2 #]]]&,1,30] (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, May 17 2019 *)

%o (Magma) [n eq 1 select 1 else Seqint(Sort(Intseq(2*Self(n-1)))): n in [1..30]]; // _Bruno Berselli_, Oct 19 2015

%o (Haskell)

%o a263451 n = a263451_list !! (n-1)

%o a263451_list = iterate (a004186 . (* 2)) 1

%o -- _Reinhard Zumkeller_, Oct 19 2015

%Y The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

%K nonn,base,easy

%O 1,2

%A _Zak Seidov_, Oct 18 2015