login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263417
a(n) = Product_{k=0..n} (3*k+2)^(n-k).
5
1, 2, 20, 1600, 1408000, 17346560000, 3633063526400000, 15218176499384320000000, 1466155647574283911168000000000, 3672576800382377947366110003200000000000, 266783946802402043703868836144710942720000000000000
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant
Eric Weisstein's World of Mathematics, Polygamma Function
FORMULA
a(n) ~ A^(1/3) * 2^(n/2 + 1/3) * 3^(n^2/2 + n/2 - 1/72) * Pi^(n/2 + 1/3) * n^(n^2/2 + 2*n/3 + 5/36) / (Gamma(2/3)^(n + 2/3) * exp(3*n^2/4 + 2*n/3 - Pi/(18*sqrt(3)) + PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) + 1/36)), where A = A074962 is the Glaisher-Kinkelin constant and PolyGamma(1, 1/3) = 10.095597125427094081792004... (PolyGamma[1, 1/3] in Mathematica or Psi(1, 1/3) in Maple).
PolyGamma(1, 1/3) = 3^(3/2) * A261024 + 2*Pi^2/3.
a(n) = 3^(n*(n+1)/2) * BarnesG(n + 5/3) / (BarnesG(2/3) * Gamma(2/3)^(n+1)). - Vaclav Kotesovec, Jan 23 2024
MATHEMATICA
Table[Product[(3*k+2)^(n-k), {k, 0, n}], {n, 0, 12}]
(* or *)
Table[1/FullSimplify[Gamma[2/3]^((v-2)/3) * 3^((v-2)/18) * Exp[Integrate[(E^((3-v)*x) - E^x)/(x*(E^(3*x)-1)^2) + (v-2) * (1/(3*x*(E^(3*x)-1)) + 1/(6*x*E^(3*x)) - (v+2)/(18*x*E^x)), {x, 0, Infinity}]]], {v, 2, 35, 3}]
Table[3^(n*(n+1)/2) * BarnesG[n + 5/3] / (BarnesG[2/3] * Gamma[2/3]^(n+1)), {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 23 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 17 2015
STATUS
approved