login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263414
Expansion of Product_{k>=1} 1/(1-x^(3*k+4))^k.
6
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 4, 2, 0, 5, 6, 1, 6, 10, 2, 7, 19, 6, 9, 28, 14, 11, 44, 28, 16, 61, 52, 25, 87, 93, 45, 116, 153, 77, 160, 244, 141, 215, 376, 244, 301, 560, 422, 422, 817, 695, 617, 1173, 1132, 917, 1661, 1776, 1399, 2331
OFFSET
0,11
COMMENTS
In general, if v>0, GCD(v,3)=1 and g.f. = Product_{k>=1} 1/(1-x^(3*k+v))^k, then
a(n) ~ d3(v) * 3^(v^2/27 - 8/9) * exp(-Pi^4 * v^2 / (3888*Zeta(3)) - v * Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) * n^(v^2/54 - 25/36) / (sqrt(Pi) * 2^(v^2/54 + 11/36) * Zeta(3)^(v^2/54 - 7/36)), where
d3(v) = exp(Integral_{x=0..infinity} (exp((3-v)*x) / (exp(3*x)-1)^2 + (1/12 - v^2/18)/exp(x) - 1/(9*x^2) + v/(9*x))/x dx).
if mod(v,3)=1, then d3(v) = exp(A263031) * 2^((v+2)/6) * 3^((v+2)/18) * Pi^((v+2)/6) / (Gamma(1/3)^((v+2)/3) * A263416((v-1)/3)).
if mod(v,3)=2, then d3(v) = exp(A263030) * 2^((v+1)/6) * Pi^((v+1)/6) / (3^((v+1)/18) * Gamma(2/3)^((v+1)/3) * A263417((v-2)/3)).
FORMULA
G.f.: exp(Sum_{k>=1} x^(7*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * exp(-Pi^4/(243*Zeta(3)) - 4*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(65/108) * 3^(8/27) * Zeta(3)^(11/108) * n^(43/108)), where c = exp(A263031) * 2 * 3^(1/3) * Pi / Gamma(1/3)^2 = 1.24446091929106216111829684663735422946506...
MAPLE
with(numtheory):
a:= proc(n) option remember; local r; `if`(n=0, 1,
add(add(`if`(irem(d-3, 3, 'r')=1, d*r, 0)
, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..70); # Alois P. Heinz, Oct 17 2015
MATHEMATICA
nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+4))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 80; CoefficientList[Series[E^Sum[x^(7*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A262877, A262876, A263405 (v=1), A263406 (v=2), A263415 (v=5), A263031, A263416.
Sequence in context: A330369 A309577 A029301 * A162934 A303908 A351592
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 17 2015
STATUS
approved