The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263415 Expansion of Product_{k>=1} 1/(1-x^(3*k+5))^k. 6
 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 4, 0, 2, 5, 0, 6, 6, 1, 10, 7, 2, 19, 8, 6, 28, 10, 14, 44, 12, 28, 60, 17, 52, 86, 26, 93, 112, 46, 152, 152, 78, 243, 196, 142, 372, 264, 244, 552, 350, 422, 798, 486, 692, 1136, 680, 1125, 1582, 997, 1758 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS In general, if v>0, GCD(v,3)=1 and g.f. = Product_{k>=1} 1/(1-x^(3*k+v))^k, then a(n) ~ d3(v) * 3^(v^2/27 - 8/9) * exp(-Pi^4 * v^2 / (3888*Zeta(3)) - v * Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) * n^(v^2/54 - 25/36) / (sqrt(Pi) * 2^(v^2/54 + 11/36) * Zeta(3)^(v^2/54 - 7/36)), where d3(v) = exp(Integral_{x=0..infinity} (exp((3-v)*x) / (exp(3*x)-1)^2 + (1/12 - v^2/18)/exp(x) - 1/(9*x^2) + v/(9*x))/x dx). if mod(v,3)=1, then d3(v) = exp(A263031) * 2^((v+2)/6) * 3^((v+2)/18) * Pi^((v+2)/6) / (Gamma(1/3)^((v+2)/3) * A263416((v-1)/3)). if mod(v,3)=2, then d3(v) = exp(A263030) * 2^((v+1)/6) * Pi^((v+1)/6) / (3^((v+1)/18) * Gamma(2/3)^((v+1)/3) * A263417((v-2)/3)). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 Vaclav Kotesovec, Graph - The asymptotic ratio (80000 terms) FORMULA G.f.: exp(Sum_{k>=1} x^(8*k)/(k*(1-x^(3*k))^2). a(n) ~ c * 3^(1/27) * exp(-25*Pi^4 / (3888*Zeta(3)) - 5*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(83/108) * Zeta(3)^(29/108) * n^(25/108)), where c = exp(A263030) * Pi / (3^(1/3) * Gamma(2/3)^2) = 0.98365214791227284535715328899346961376609... MAPLE with(numtheory): a:= proc(n) option remember; local r; `if`(n=0, 1,        add(add(`if`(irem(d-3, 3, 'r')=2, d*r, 0)         , d=divisors(j))*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..70);  # Alois P. Heinz, Oct 17 2015 MATHEMATICA nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+5))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 80; CoefficientList[Series[E^Sum[x^(8*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A262877, A262876, A263405 (v=1), A263406 (v=2), A263414 (v=4), A263030, A263417. Sequence in context: A268865 A024159 A029302 * A321459 A143517 A145352 Adjacent sequences:  A263412 A263413 A263414 * A263416 A263417 A263418 KEYWORD nonn AUTHOR Vaclav Kotesovec, Oct 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 15:45 EST 2021. Contains 349463 sequences. (Running on oeis4.)