login
A162934
Shift sequence A162932 twice then subtract from the original sequence.
0
1, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 4, 2, 2, 5, 3, 4, 9, 5, 6, 13, 11, 10, 19, 17, 19, 28, 27, 31, 44, 41, 49, 66, 68, 74, 98, 104, 118, 145, 157, 178, 220, 234, 268, 322, 354, 397, 473, 521, 591, 686, 765, 863, 1003, 1107, 1254, 1444, 1609
OFFSET
6,7
COMMENTS
From Alford Arnold, Dec 17 2009: (Start)
At n = 24, six of the partitions can be associated with the sixth row of this triangular array:
333
444 3333
555 4443 33333
666 5553 44433 333333
777 6663 55533 444333 3333333
888 7773 66633 555333 4443333 33333333
The other three partitions are new; and hence on their first row, so 6*1 + 1*3 = 9.
In a similar manner, the 44 cases at n = 36 can be computed using the array row numbers and the number of applicable partitions. Thus we have:
(10, 5, 3, 2, 1) times (1, 3, 2, 3, 7) providing 10 + 15 + 6 + 6 + 7 = 44 cases. (End)
FORMULA
G.f.: Sum_{n >= 0} q^(3*n+6)/Product_{k = 1..n} 1 - q^(k+2). - Peter Bala, Dec 01 2024
EXAMPLE
For n = 24, the sequence counts these nine partitions of 24: 888, 7773, 66633, 55554, 555333, 4443333, 6666, 444444, 33333333.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alford Arnold, Aug 05 2009, Aug 06 2009
EXTENSIONS
More terms from Alford Arnold, Dec 17 2009
More terms from Joerg Arndt, Jul 16 2015
STATUS
approved