OFFSET
6,7
COMMENTS
a(n) counts partitions of n such that all parts are >=2 and the largest part occurs at least three times, see example.
LINKS
Andrew van den Hoeven, Table of n, a(n) for n = 6..10000
FORMULA
From Mircea Merca, Jun 11 2012: (Start)
a(n) = p(n) - 2*p(n-1) + 2*p(n-3) - p(n-4) for n >= 6, where p(n) = A000041(n).
G.f.: -1 + x - x^3 + (1 - x)*Product_{k > 2} 1/(1 - x^k). (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (36*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{n >= 1} q^(3*n+3)/Product_{k = 1..n} 1 - q^(k+1). - Peter Bala, Dec 01 2024
EXAMPLE
For n = 19 the a(19) = 6 partitions are 5554, 44443, 55522, 444322, 3333322 and 33322222.
MATHEMATICA
Table[PartitionsP[n] - 2 PartitionsP[n - 1] + 2 PartitionsP[n - 3] - PartitionsP[n - 4], {n, 6, 70}] (* Vincenzo Librandi, Dec 09 2014 *)
PROG
(Magma) a:=func<n | NumberOfPartitions(n)-2*NumberOfPartitions(n-1)+2*NumberOfPartitions(n-3)-NumberOfPartitions(n-4)>; [a(n): n in [6..100]]; // Vincenzo Librandi, Dec 09 2014
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Alford Arnold, Jul 17 2009
EXTENSIONS
Keyword:tabf removed, indexing corrected, sequence extended by R. J. Mathar, Sep 17 2009
STATUS
approved