login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162932
a(n) = A053445(n-2) - A053445(n-4).
4
1, 0, 1, 1, 1, 1, 3, 1, 3, 4, 4, 4, 8, 6, 10, 11, 13, 15, 22, 20, 28, 33, 39, 43, 58, 60, 77, 88, 104, 119, 148, 160, 197, 226, 265, 300, 363, 404, 481, 549, 638, 727, 858, 961, 1126, 1283, 1480, 1680, 1953, 2201, 2544, 2887, 3309, 3750, 4312, 4857, 5566, 6301, 7175
OFFSET
6,7
COMMENTS
a(n) counts partitions of n such that all parts are >=2 and the largest part occurs at least three times, see example.
LINKS
Andrew van den Hoeven, Table of n, a(n) for n = 6..10000
FORMULA
From Mircea Merca, Jun 11 2012: (Start)
a(n) = p(n) - 2*p(n-1) + 2*p(n-3) - p(n-4) for n >= 6, where p(n) = A000041(n).
G.f.: -1 + x - x^3 + (1 - x)*Product_{k > 2} 1/(1 - x^k). (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (36*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{n >= 1} q^(3*n+3)/Product_{k = 1..n} 1 - q^(k+1). - Peter Bala, Dec 01 2024
EXAMPLE
For n = 19 the a(19) = 6 partitions are 5554, 44443, 55522, 444322, 3333322 and 33322222.
MATHEMATICA
Table[PartitionsP[n] - 2 PartitionsP[n - 1] + 2 PartitionsP[n - 3] - PartitionsP[n - 4], {n, 6, 70}] (* Vincenzo Librandi, Dec 09 2014 *)
PROG
(Magma) a:=func<n | NumberOfPartitions(n)-2*NumberOfPartitions(n-1)+2*NumberOfPartitions(n-3)-NumberOfPartitions(n-4)>; [a(n): n in [6..100]]; // Vincenzo Librandi, Dec 09 2014
CROSSREFS
Sequence in context: A320279 A175290 A089958 * A216036 A008924 A175186
KEYWORD
nonn,changed
AUTHOR
Alford Arnold, Jul 17 2009
EXTENSIONS
Keyword:tabf removed, indexing corrected, sequence extended by R. J. Mathar, Sep 17 2009
STATUS
approved