login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347608
Number of interlacing triangles of size n.
1
1, 2, 20, 1744, 2002568, 42263042752, 21686691099024768, 344069541824691045987328, 226788686879114461294165127878656
OFFSET
1,2
COMMENTS
An interlacing triangle of size n is a triangular array of the numbers 1, 2, ..., (n+1)*n/2 such that if T(i,j) denotes the j-th number in the i-th row then either T(i-1,j+1) < T(i,j) < T(i-1,j) or T(i-1,j) < T(i,j) < T(i-1,j+1) for 1 < i <= n and 1 <= j <= n-i+1.
Generalizes A003121 for the case when rows are not strictly increasing. See comment from Mar 25 2012 and comment from Dec 02 2014.
EXAMPLE
For n = 2, a(2) = 2. The interlacing triangles are given below:
2 2
1 3 and 3 1.
PROG
(Sage)
def interlacing(n):
C_2=[]
part=[j for j in range(n-1, -1, -1)]
box=[]
big_box=[]
pos=0
d=0
C_2_star=[]
for g in Words([0, 1], n*(n-1)/2).list():
C_2.append(list(g))
for h in C_2:
relations=[]
pos=0
big_box=[]
for j in range(len(part)-1):
for k in list(h)[pos:pos+part[j]]:
box.append(k)
big_box.append(box)
box=[]
pos=pos+part[j]
x=0
for k in range(1, len(big_box)):
for r in range(len(big_box[k])):
if big_box[k][r]==1 and big_box[k-1][r]==0 and big_box[k-1][r+1]==0 or big_box[k][r]==0 and big_box[k-1][r]==1 and big_box[k-1][r+1]==1:
continue
else:
x=x+1
if x==(n-1)*(n-2)/2:
q=q+1
C_2_star.append(big_box)
position=range(n*(n+1)/2)
for tri in C_2_star:
P=[]
relations=[]
counter=0
collect=[]
for j in range(len(tri)):
for r in range(len(tri[j])):
if tri[j][r]==0:
relations.append([position[counter], position[counter+n-j]])
relations.append([position[counter+n-j], position[counter+1]])
if tri[j][r]==1:
relations.append([position[counter+n-j], position[counter]])
relations.append([position[counter+1], position[counter+n-j]])
counter=counter+1
counter=counter+1
P=Poset([range(n*(n+1)/2), relations])
d=d+P.linear_extensions().cardinality()
return d
CROSSREFS
Cf. A003121.
Sequence in context: A196749 A263417 A053848 * A244015 A279691 A319639
KEYWORD
nonn,more
AUTHOR
James B. Sidoli, Sep 08 2021
EXTENSIONS
a(7)-a(9) from Dylan Nelson, May 09 2022
STATUS
approved