login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262095
Number of non-semiprime divisors of n.
1
1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 4, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 3, 4, 2, 5, 2, 5, 3, 3, 3, 6, 2, 3, 3, 6, 2, 5, 2, 4, 4, 3, 2, 8, 2, 4, 3, 4, 2, 6, 3, 6, 3, 3, 2, 8, 2, 3, 4, 6, 3, 5, 2, 4, 3, 5, 2, 9, 2, 3, 4, 4, 3, 5, 2, 8, 4, 3, 2, 8, 3, 3, 3, 6, 2, 8, 3, 4, 3, 3, 3, 10, 2
OFFSET
1,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A000005(n) - A086971(n).
A083399(n) <= a(n) <= A000005(n).
a(n) = Sum_{k=1..A000005(n)} (1 - A064911(A027750(n,k))). - Reinhard Zumkeller, Sep 14 2015
EXAMPLE
(1, 2, 3, 4, 6, 8, 12, 24) are the divisors of n = 24: 1, 2, 3, 8, 12, and 24 are non-semiprimes, therefore a(24) = 6.
MATHEMATICA
Table[Count[Divisors@ n, x_ /; PrimeOmega@ x != 2], {n, 97}] (* Michael De Vlieger, Sep 14 2015 *)
PROG
(PARI) a(n) = sumdiv(n, d, bigomega(d)!=2); \\ Michel Marcus, Sep 11 2015
(PARI) a(n)=my(f=factor(n)[, 2]); prod(i=1, #f, f[i]+1) - sum(i=1, #f, f[i]>1) - #f*(#f-1)/2 \\ Charles R Greathouse IV, Sep 14 2015
(Haskell)
a262095 = sum . map ((1 -) . a064911) . a027750_row
-- Reinhard Zumkeller, Sep 14 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved