Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 13 2018 09:14:34
%S 1,2,2,2,2,3,2,3,2,3,2,4,2,3,3,4,2,4,2,4,3,3,2,6,2,3,3,4,2,5,2,5,3,3,
%T 3,6,2,3,3,6,2,5,2,4,4,3,2,8,2,4,3,4,2,6,3,6,3,3,2,8,2,3,4,6,3,5,2,4,
%U 3,5,2,9,2,3,4,4,3,5,2,8,4,3,2,8,3,3,3,6,2,8,3,4,3,3,3,10,2
%N Number of non-semiprime divisors of n.
%H Charles R Greathouse IV, <a href="/A262095/b262095.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000005(n) - A086971(n).
%F A083399(n) <= a(n) <= A000005(n).
%F a(n) = Sum_{k=1..A000005(n)} (1 - A064911(A027750(n,k))). - _Reinhard Zumkeller_, Sep 14 2015
%e (1, 2, 3, 4, 6, 8, 12, 24) are the divisors of n = 24: 1, 2, 3, 8, 12, and 24 are non-semiprimes, therefore a(24) = 6.
%t Table[Count[Divisors@ n, x_ /; PrimeOmega@ x != 2], {n, 97}] (* _Michael De Vlieger_, Sep 14 2015 *)
%o (PARI) a(n) = sumdiv(n, d, bigomega(d)!=2); \\ _Michel Marcus_, Sep 11 2015
%o (PARI) a(n)=my(f=factor(n)[,2]); prod(i=1,#f,f[i]+1) - sum(i=1,#f,f[i]>1) - #f*(#f-1)/2 \\ _Charles R Greathouse IV_, Sep 14 2015
%o (Haskell)
%o a262095 = sum . map ((1 -) . a064911) . a027750_row
%o -- _Reinhard Zumkeller_, Sep 14 2015
%Y Cf. A000005, A083399, A086971, A100959.
%Y Cf. A064911, A027750.
%K nonn,easy
%O 1,2
%A _Juri-Stepan Gerasimov_, Sep 11 2015