login
A261222
a(n) = number of steps to reach 0 when starting from k = n*n and repeatedly applying the map that replaces k with k - A053610(k), where A053610(k) = the number of positive squares that sum to k using the greedy algorithm.
9
0, 1, 2, 4, 6, 9, 12, 15, 19, 24, 29, 35, 41, 48, 55, 62, 70, 78, 87, 97, 107, 118, 129, 141, 153, 165, 178, 191, 205, 219, 234, 249, 265, 282, 299, 317, 335, 354, 373, 392, 412, 433, 454, 475, 497, 519, 542, 565, 589, 613, 638, 664, 690, 717, 744, 772, 800, 828, 857, 887, 917, 948, 979, 1010, 1042, 1074, 1107, 1140, 1174, 1208, 1243, 1278, 1314, 1351, 1388, 1426, 1464, 1503
OFFSET
0,3
LINKS
FORMULA
a(n) = A261221(n^2).
Other identities. For all n >= 1:
a(n) = 1 + A261223(n).
MATHEMATICA
Table[-1 + Length@ NestWhileList[# - Block[{m = #, c = 1}, While[a = (# - Floor[Sqrt@ #]^2) &@ m; a != 0, c++; m = a]; c] &, n^2, # != 0 &], {n, 0, 77}] (* Michael De Vlieger, Sep 08 2016, after Jud McCranie at A053610 *)
PROG
(Scheme, two variants, the other one using memoization-macro definec)
(definec (A261222 n) (if (<= n 1) n (+ (A261224 (- n 1)) (A261222 (- n 1)))))
(define (A261222 n) (A261221 (* n n)))
CROSSREFS
Essentially one more than A261223.
First differences: A261224.
Cf. also A260732, A261227.
Sequence in context: A194229 A194201 A194203 * A130025 A278299 A145802
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 12 2015
STATUS
approved