login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194229
Partial sums of A057357.
2
0, 1, 2, 4, 6, 9, 12, 15, 19, 23, 28, 33, 39, 45, 51, 58, 65, 73, 81, 90, 99, 108, 118, 128, 139, 150, 162, 174, 186, 199, 212, 226, 240, 255, 270, 285, 301, 317, 334, 351, 369, 387, 405, 424, 443, 463, 483, 504, 525, 546, 568, 590, 613, 636, 660, 684, 708
OFFSET
1,3
FORMULA
G.f.: x^2*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, Jan 09 2016
G.f.: x^2*(1-x^6) / ((1-x)^2*(1-x^2)*(1-x^7)). - Michael Somos, Sep 13 2023
EXAMPLE
G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + ... - Michael Somos, Sep 13 2023
MATHEMATICA
r = 3/7;
a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
Table[a[n], {n, 1, 90}] (* A057357 *)
s[n_] := Sum[a[k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A194229 *)
Table[Sum[Floor[3*k/7], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Nov 03 2017 *)
a[ n_] := Floor[(n^2 + n)*3/14]; (* Michael Somos, Sep 13 2023 *)
PROG
(PARI) concat(0, Vec(x^2*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x+x^2+x^3+x^4 +x^5+x^6)) + O(x^100))) \\ Colin Barker, Jan 09 2016
(PARI) a(n) = sum(k=1, n, 3*k\7); \\ Michel Marcus, Nov 03 2017
(PARI) {a(n) = (n^2+n)*3\14}; /* Michael Somos, Sep 13 2023 */
CROSSREFS
Cf. A057357.
Sequence in context: A075349 A156024 A234363 * A194201 A194203 A261222
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 19 2011
STATUS
approved