OFFSET
1,3
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
FORMULA
G.f.: x^2*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, Jan 09 2016
G.f.: x^2*(1-x^6) / ((1-x)^2*(1-x^2)*(1-x^7)). - Michael Somos, Sep 13 2023
EXAMPLE
G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + ... - Michael Somos, Sep 13 2023
MATHEMATICA
r = 3/7;
a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
Table[a[n], {n, 1, 90}] (* A057357 *)
s[n_] := Sum[a[k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A194229 *)
Table[Sum[Floor[3*k/7], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Nov 03 2017 *)
a[ n_] := Floor[(n^2 + n)*3/14]; (* Michael Somos, Sep 13 2023 *)
PROG
(PARI) concat(0, Vec(x^2*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x+x^2+x^3+x^4 +x^5+x^6)) + O(x^100))) \\ Colin Barker, Jan 09 2016
(PARI) a(n) = sum(k=1, n, 3*k\7); \\ Michel Marcus, Nov 03 2017
(PARI) {a(n) = (n^2+n)*3\14}; /* Michael Somos, Sep 13 2023 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 19 2011
STATUS
approved