login
A260072
Primes p such that (p-1)^2+1 divides 2^(p-1)-1.
2
17, 257, 8209, 65537, 649801
OFFSET
1,1
COMMENTS
a(6), if it exists, is larger than 1.7*10^12. - Giovanni Resta, Jul 23 2015
N = 1382401 is the smallest composite number such that (n-1)^2+1 divides 2^(n-1)-1, cf. A260407; see also A081762 and A260406. The sequence contains all Fermat primes 2^2^k+1 > 5 (A019434). - M. F. Hasler, Jul 24 2015
EXAMPLE
17 is in this sequence because (17 - 1)^2 + 1 = 257 divides 2^(17 - 1) - 1 = 65535; 65535 / 257 = 255.
MATHEMATICA
fQ[n_] := PowerMod[2, n-1, (n-1)^2 + 1] == 1; p = 2; lst = {}; While[p < 10^9, If[ fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p] (* Robert G. Wilson v, Jul 24 2015 *)
PROG
(Magma) [n: n in [1..2000000] | IsPrime(n) and (2^(n-1)-1) mod ((n-1)^2 + 1) eq 0]
CROSSREFS
Cf. A081762 (primes p such that (p-1)^2 - 1 divides 2^(p-1) - 1).
Sequence in context: A355876 A337846 A174408 * A260407 A193329 A256499
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Jul 22 2015
STATUS
approved