login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174408
Primes of the form A174335(i)-1 or A174335(i)+1.
0
17, 257, 2591, 2593, 239999, 2488319, 27659519, 27659521, 330301441, 4232632319, 58060799999, 13243436236801, 70614415872000001, 3429209878281350809286344704000001, 1665505492033205854772229590583093971095149084672000000001
OFFSET
1,1
FORMULA
a(n) = {A000040(i)} INTERSECTION ({16*(j^3)*(j!) - 1} UNION {16*(k^3)*(k!) - 1}).
EXAMPLE
a(1) = 17 = 16 * 1^3 * 1! + 1 is prime.
a(2) = 257 = 16 * 2^3 * 2! + 1 is prime.
a(3) = 2591 = 16 * 3^3 * 3! - 1 is prime.
a(4) = 2593 = 16 * 3^3 * 3! + 1 is prime.
a(5) = 239999 = 16 * 5^3 * 5! - 1 is prime.
a(6) = 2488319 = 16 * 6^3 * 6! - 1 is prime.
a(7) = 27659519 = 16 * 7^3 * 7! - 1 is prime.
a(8) = 27659521 = 16 * 7^3 * 7! + 1 is prime.
a(9) = 330301441 = 16 * 8^3 * 8! + 1 is prime.
a(10) = 4232632319 = 16 * 9^3 * 9! - 1 is prime.
a(11) = 58060799999 = 16 * 10^3 * 10! - 1 is prime.
a(12) = 13243436236801 = 16 * 12^3 * 12! + 1 is prime.
a(13) = 70614415872000001 = 16 * 15^3 * 15! + 1 is prime.
MAPLE
A174335 := proc(n) 16*n^3*n! ; end proc: for i from 1 to 60 do a := A174335(i) ; if isprime(a-1) then printf("%d, ", a-1) ; end if; if isprime(a+1) then printf("%d, ", a+1) ; end if; end do: # R. J. Mathar, Apr 15 2010
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 19 2010
EXTENSIONS
One more term from R. J. Mathar, Apr 15 2010
STATUS
approved