login
A174409
Prime numbers p such that the concatenation p^3//1331 is a prime number.
1
2, 107, 137, 167, 257, 269, 311, 317, 557, 593, 761, 773, 809, 911, 1103, 1151, 1283, 1289, 1481, 1487, 1559, 1709, 1787, 1931, 2111, 2141, 2243, 2339, 2357, 2657, 2687, 2777, 2909, 3137, 3209, 3251, 3359, 3371, 3389, 3449
OFFSET
1,1
COMMENTS
See comments at A174213.
p^3//1331 is the concatenation of the cubes of two primes.
With the exception of a(1)=2, each term is necessarily of the form 6*k-1.
LINKS
EXAMPLE
The first prime is 2; 2^3 = 8, and 81331 = prime(7958), so a(1)=2.
The smallest prime p > 2 such that p^3//1331 yields a prime is p=107: 107^3 = 1225043, and 12250431331 = prime(552342812), so a(2)=107.
MATHEMATICA
Select[Prime[Range[500]], PrimeQ[10000#^3+1331]&] (* Harvey P. Dale, May 30 2017 *)
PROG
(Magma) [p: p in PrimesUpTo(5000) | IsPrime(Seqint(Intseq(1331) cat Intseq(p^3)))]; // Vincenzo Librandi, Mar 05 2018
KEYWORD
base,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 19 2010
STATUS
approved