login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267550
Primes p such that p (mod 3) = p (mod 5) = p (mod 7).
1
2, 107, 211, 317, 421, 631, 947, 1051, 1367, 1471, 1787, 1997, 2207, 2311, 2417, 2521, 2731, 2837, 3257, 3361, 3467, 3571, 3677, 4201, 4517, 4621, 4831, 4937, 5147, 5881, 5987, 6091, 6197, 6301, 6827, 7247, 7351, 7457, 7561, 7877, 8087, 8191, 8297, 8821, 9137, 9241, 9661, 9767, 9871, 10501
OFFSET
1,1
COMMENTS
Or primes p such that p (mod 105) = {1, 2}.
In terms a(4227)...a(4246) their terminal digits alternate: 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7.
LINKS
MATHEMATICA
Select[ Prime[ Range[10000]], (Mod[#, 3] == Mod[#, 5] == Mod[#, 7]) &](*Or*)
Select[ Prime[ Range[10000]], 0 < Mod[#, 105] < 3 &]
Select[Prime[Range[10000]], Length[Union[Mod[#, {3, 5, 7}]]]==1&] (* Harvey P. Dale, Oct 11 2019 *)
PROG
(Magma) [p: p in PrimesUpTo(10000) | p mod 3 eq p mod 5 and p mod 5 eq p mod 7]; // Vincenzo Librandi, Jan 17 2016
(PARI) lista(nn) = forprime(p=2, nn, if(p%3 == p%5 && p%5 == p%7, print1(p, ", "))); \\ Altug Alkan, Jan 25 2016
CROSSREFS
Sequence in context: A139887 A174409 A340054 * A224819 A156502 A111456
KEYWORD
nonn,easy
AUTHOR
Mikk Heidemaa, Jan 17 2016
EXTENSIONS
More terms from Vincenzo Librandi, Jan 17 2016
STATUS
approved