login
A260006
a(n) = f(1,n,n), where f is the Sudan function defined in A260002.
9
0, 3, 12, 35, 90, 217, 504, 1143, 2550, 5621, 12276, 26611, 57330, 122865, 262128, 557039, 1179630, 2490349, 5242860, 11010027, 23068650, 48234473, 100663272, 209715175, 436207590, 905969637, 1879048164, 3892314083, 8053063650, 16642998241, 34359738336
OFFSET
0,2
COMMENTS
f(1,n,n) = 2^n*(n+2) - (n+2) = (2^n - 1)*(n+2).
To evaluate the Sudan function see A260002 and A260003.
The numbers are alternately even and odd because for even n (2^n-1)*(n+2) is even and (2^(n+1)-1)*(n+1+2) is odd.
From Enrique Navarrete, Oct 02 2021: (Start)
a(n-2) is the number of ways we can write [n] as the union of 2 sets of sizes i, j which intersect in exactly 1 element (1 < i, j < n; i = j allowed), n>=2.
For n = 4, a(n-2) = 12 since [4] can be written as the unions:
{1,2} U {1,3,4}; {2,3} U {1,2,4}; {1,2} U {2,3,4}; {2,3} U {1,3,4};
{1,3} U {1,2,4}; {2,4} U {1,2,3}; {1,3} U {2,3,4}; {2,4} U {1,3,4};
{1,4} U {1,2,3}; {3,4} U {1,2,3}; {1,4} U {2,3,4}; {3,4} U {1,2,4}. (End)
LINKS
Wikipedia, Sudan function (see diagonal of "Values of F1(x, y)" table).
FORMULA
a(n) = (2^n -1)*(n+2).
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>3. - Colin Barker, Jul 29 2015
G.f.: x*(3 - 6*x + 2*x^2) / ((1-x)^2*(1-2*x)^2). - Colin Barker, Jul 29 2015
E.g.f.: 2*(x+1)*exp(2*x) - (x+2)*exp(x). - Robert Israel, Aug 23 2015
From Enrique Navarrete, Oct 02 2021: (Start)
a(n-2) = Sum_{j=2..n/2} binomial(n,j)*j, n even > 2.
a(n-2) = (Sum_{j=2..floor(n/2)} binomial(n,j)*j) + (1/2)*binomial(n, ceiling(n/2))*ceiling(n/2), n odd > 1. (End)
From Wolfdieter Lang, Nov 12 2021: (Start)
The previous bisection becomes for a(n):
a(2*k) = 2*(A002697(k+1) - (k+1)), and a(2*k+1) = A303602(k+1) - (2*k+3)*(2 - A000984(k+1))/2 = (2*k+3)*(4^(k+1) - 2)/2, for k >= 0. (End)
EXAMPLE
a(4) = (2^4 - 1)*(4 + 2) = 90.
MATHEMATICA
Table[(2^n -1)(n+2), {n, 0, 30}] (* Michael De Vlieger, Aug 22 2015 *)
CoefficientList[Series[x(3 -6x +2x^2)/((1-x)^2 (1-2x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 22 2015 *)
LinearRecurrence[{6, -13, 12, -4}, {0, 3, 12, 35}, 40] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(PARI) vector(40, n, n--; (2^n-1)*(n+2)) \\ Michel Marcus, Jul 29 2015
(PARI) concat(0, Vec(x*(3-6*x+2*x^2)/((1-x)^2*(1-2*x)^2) + O(x^40))) \\ Colin Barker, Jul 29 2015
(Magma) [(2^n-1)*(n+2): n in [0..30]]; // Vincenzo Librandi, Aug 22 2015
(Sage) [(n+2)*(2^n -1) for n in (0..30)] # G. C. Greubel, Dec 30 2021
CROSSREFS
Cf. A000295 (f(1,0,n)), A000325 (f(1,2,n)), A005408 (f(1,n,1) = 2n+1), A001787 (n*2^(n-1)), A079583 (f(1,1,n)), A123720 (f(1,4,n)), A133124 (f(1,3,n)).
Sequence in context: A293267 A295363 A097339 * A303862 A320346 A305542
KEYWORD
nonn,easy,less
AUTHOR
Natan Arie Consigli, Jul 23 2015
STATUS
approved