login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260006
a(n) = f(1,n,n), where f is the Sudan function defined in A260002.
9
0, 3, 12, 35, 90, 217, 504, 1143, 2550, 5621, 12276, 26611, 57330, 122865, 262128, 557039, 1179630, 2490349, 5242860, 11010027, 23068650, 48234473, 100663272, 209715175, 436207590, 905969637, 1879048164, 3892314083, 8053063650, 16642998241, 34359738336
OFFSET
0,2
COMMENTS
f(1,n,n) = 2^n*(n+2) - (n+2) = (2^n - 1)*(n+2).
To evaluate the Sudan function see A260002 and A260003.
The numbers are alternately even and odd because for even n (2^n-1)*(n+2) is even and (2^(n+1)-1)*(n+1+2) is odd.
From Enrique Navarrete, Oct 02 2021: (Start)
a(n-2) is the number of ways we can write [n] as the union of 2 sets of sizes i, j which intersect in exactly 1 element (1 < i, j < n; i = j allowed), n>=2.
For n = 4, a(n-2) = 12 since [4] can be written as the unions:
{1,2} U {1,3,4}; {2,3} U {1,2,4}; {1,2} U {2,3,4}; {2,3} U {1,3,4};
{1,3} U {1,2,4}; {2,4} U {1,2,3}; {1,3} U {2,3,4}; {2,4} U {1,3,4};
{1,4} U {1,2,3}; {3,4} U {1,2,3}; {1,4} U {2,3,4}; {3,4} U {1,2,4}. (End)
LINKS
Wikipedia, Sudan function (see diagonal of "Values of F1(x, y)" table).
FORMULA
a(n) = (2^n -1)*(n+2).
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>3. - Colin Barker, Jul 29 2015
G.f.: x*(3 - 6*x + 2*x^2) / ((1-x)^2*(1-2*x)^2). - Colin Barker, Jul 29 2015
E.g.f.: 2*(x+1)*exp(2*x) - (x+2)*exp(x). - Robert Israel, Aug 23 2015
From Enrique Navarrete, Oct 02 2021: (Start)
a(n-2) = Sum_{j=2..n/2} binomial(n,j)*j, n even > 2.
a(n-2) = (Sum_{j=2..floor(n/2)} binomial(n,j)*j) + (1/2)*binomial(n, ceiling(n/2))*ceiling(n/2), n odd > 1. (End)
From Wolfdieter Lang, Nov 12 2021: (Start)
The previous bisection becomes for a(n):
a(2*k) = 2*(A002697(k+1) - (k+1)), and a(2*k+1) = A303602(k+1) - (2*k+3)*(2 - A000984(k+1))/2 = (2*k+3)*(4^(k+1) - 2)/2, for k >= 0. (End)
EXAMPLE
a(4) = (2^4 - 1)*(4 + 2) = 90.
MATHEMATICA
Table[(2^n -1)(n+2), {n, 0, 30}] (* Michael De Vlieger, Aug 22 2015 *)
CoefficientList[Series[x(3 -6x +2x^2)/((1-x)^2 (1-2x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 22 2015 *)
LinearRecurrence[{6, -13, 12, -4}, {0, 3, 12, 35}, 40] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(PARI) vector(40, n, n--; (2^n-1)*(n+2)) \\ Michel Marcus, Jul 29 2015
(PARI) concat(0, Vec(x*(3-6*x+2*x^2)/((1-x)^2*(1-2*x)^2) + O(x^40))) \\ Colin Barker, Jul 29 2015
(Magma) [(2^n-1)*(n+2): n in [0..30]]; // Vincenzo Librandi, Aug 22 2015
(Sage) [(n+2)*(2^n -1) for n in (0..30)] # G. C. Greubel, Dec 30 2021
CROSSREFS
Cf. A000295 (f(1,0,n)), A000325 (f(1,2,n)), A005408 (f(1,n,1) = 2n+1), A001787 (n*2^(n-1)), A079583 (f(1,1,n)), A123720 (f(1,4,n)), A133124 (f(1,3,n)).
Sequence in context: A293267 A295363 A097339 * A303862 A320346 A305542
KEYWORD
nonn,easy,less
AUTHOR
Natan Arie Consigli, Jul 23 2015
STATUS
approved