login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = f(1,n,n), where f is the Sudan function defined in A260002.
9

%I #70 Mar 04 2023 11:32:16

%S 0,3,12,35,90,217,504,1143,2550,5621,12276,26611,57330,122865,262128,

%T 557039,1179630,2490349,5242860,11010027,23068650,48234473,100663272,

%U 209715175,436207590,905969637,1879048164,3892314083,8053063650,16642998241,34359738336

%N a(n) = f(1,n,n), where f is the Sudan function defined in A260002.

%C f(1,n,n) = 2^n*(n+2) - (n+2) = (2^n - 1)*(n+2).

%C To evaluate the Sudan function see A260002 and A260003.

%C The numbers are alternately even and odd because for even n (2^n-1)*(n+2) is even and (2^(n+1)-1)*(n+1+2) is odd.

%C From _Enrique Navarrete_, Oct 02 2021: (Start)

%C a(n-2) is the number of ways we can write [n] as the union of 2 sets of sizes i, j which intersect in exactly 1 element (1 < i, j < n; i = j allowed), n>=2.

%C For n = 4, a(n-2) = 12 since [4] can be written as the unions:

%C {1,2} U {1,3,4}; {2,3} U {1,2,4}; {1,2} U {2,3,4}; {2,3} U {1,3,4};

%C {1,3} U {1,2,4}; {2,4} U {1,2,3}; {1,3} U {2,3,4}; {2,4} U {1,3,4};

%C {1,4} U {1,2,3}; {3,4} U {1,2,3}; {1,4} U {2,3,4}; {3,4} U {1,2,4}. (End)

%H Colin Barker, <a href="/A260006/b260006.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Sudan_function">Sudan function</a> (see diagonal of "Values of F1(x, y)" table).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4).

%F a(n) = (2^n -1)*(n+2).

%F a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>3. - _Colin Barker_, Jul 29 2015

%F G.f.: x*(3 - 6*x + 2*x^2) / ((1-x)^2*(1-2*x)^2). - _Colin Barker_, Jul 29 2015

%F E.g.f.: 2*(x+1)*exp(2*x) - (x+2)*exp(x). - _Robert Israel_, Aug 23 2015

%F From _Enrique Navarrete_, Oct 02 2021: (Start)

%F a(n-2) = Sum_{j=2..n/2} binomial(n,j)*j, n even > 2.

%F a(n-2) = (Sum_{j=2..floor(n/2)} binomial(n,j)*j) + (1/2)*binomial(n, ceiling(n/2))*ceiling(n/2), n odd > 1. (End)

%F From _Wolfdieter Lang_, Nov 12 2021: (Start)

%F The previous bisection becomes for a(n):

%F a(2*k) = 2*(A002697(k+1) - (k+1)), and a(2*k+1) = A303602(k+1) - (2*k+3)*(2 - A000984(k+1))/2 = (2*k+3)*(4^(k+1) - 2)/2, for k >= 0. (End)

%e a(4) = (2^4 - 1)*(4 + 2) = 90.

%t Table[(2^n -1)(n+2), {n, 0, 30}] (* _Michael De Vlieger_, Aug 22 2015 *)

%t CoefficientList[Series[x(3 -6x +2x^2)/((1-x)^2 (1-2x)^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 22 2015 *)

%t LinearRecurrence[{6,-13,12,-4},{0,3,12,35},40] (* _Harvey P. Dale_, Mar 04 2023 *)

%o (PARI) vector(40, n, n--; (2^n-1)*(n+2)) \\ _Michel Marcus_, Jul 29 2015

%o (PARI) concat(0, Vec(x*(3-6*x+2*x^2)/((1-x)^2*(1-2*x)^2) + O(x^40))) \\ _Colin Barker_, Jul 29 2015

%o (Magma) [(2^n-1)*(n+2): n in [0..30]]; // _Vincenzo Librandi_, Aug 22 2015

%o (Sage) [(n+2)*(2^n -1) for n in (0..30)] # _G. C. Greubel_, Dec 30 2021

%Y Cf. A000295 (f(1,0,n)), A000325 (f(1,2,n)), A005408 (f(1,n,1) = 2n+1), A001787 (n*2^(n-1)), A079583 (f(1,1,n)), A123720 (f(1,4,n)), A133124 (f(1,3,n)).

%Y Cf. A260002, A260003, A260004, A260005.

%Y Cf. A000984, A002697, A303602.

%K nonn,easy,less

%O 0,2

%A _Natan Arie Consigli_, Jul 23 2015