login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259445
Multiplicative with a(n) = n if n is odd and a(2^s)=2.
3
1, 2, 3, 2, 5, 6, 7, 2, 9, 10, 11, 6, 13, 14, 15, 2, 17, 18, 19, 10, 21, 22, 23, 6, 25, 26, 27, 14, 29, 30, 31, 2, 33, 34, 35, 18, 37, 38, 39, 10, 41, 42, 43, 22, 45, 46, 47, 6, 49, 50, 51, 26, 53, 54, 55, 14, 57, 58, 59, 30, 61, 62, 63, 2, 65, 66, 67, 34
OFFSET
1,2
COMMENTS
If n = 2^s*m with m odd and s > 0 then a(n) = 2*m.
FORMULA
From Peter Bala, Feb 21 2019: (Start)
a(n) = n*gcd(n,2)/gcd(n,2^n).
a(2*n) = 2*A000265(2*n); a(2*n+1) = A000265(2*n+1).
O.g.f.: x*(1 + 4*x + x^2)/(1 - x^2)^2 - 2*( F(x^2) + F(x^4) + F(x^8) + ... ), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} (1/a(n))*x^n = (3/4)*L(x) - (1/4)*L(-x) + (1/4)*( L(x^2) + L(x^4) + L(x^8) + ... ), where L(x) = log(1/(1 - x)).
(End)
From Peter Bala, Mar 09 2019: (Start)
a(n) = (-1)^(n+1)*Sum_ {d divides n} (-1)^(d+n/d)*phi(d), where phi(n) = A000010(n) is the Euler totient function. Cf. the identity n = Sum_ {d divides n} phi(d). Cf. A046897 and A321558.
O.g.f.: Sum_{n >= 1} phi(n)*x^n/(1 + (-x)^n). (End)
From Amiram Eldar, Nov 28 2022: (Start)
Dirichlet g.f.: zeta(s-1)*(1 + 1/2^(s-1) - 2/(2^s-1)).
Sum_{k=1..n} a(k) ~ (5/12) * n^2. (End)
MATHEMATICA
G[n_] := If[Mod[n, 2] == 0, n/2^(FactorInteger[n][[1, 2]] - 1), n]; Table[G[n], {n, 1, 70}]
PROG
(PARI) a(n)=n>>max(valuation(n, 2)-1, 0) \\ Charles R Greathouse IV, Jun 28 2015
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved