The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259445 Multiplicative with a(n) = n if n is odd and a(2^s)=2. 2
 1, 2, 3, 2, 5, 6, 7, 2, 9, 10, 11, 6, 13, 14, 15, 2, 17, 18, 19, 10, 21, 22, 23, 6, 25, 26, 27, 14, 29, 30, 31, 2, 33, 34, 35, 18, 37, 38, 39, 10, 41, 42, 43, 22, 45, 46, 47, 6, 49, 50, 51, 26, 53, 54, 55, 14, 57, 58, 59, 30, 61, 62, 63, 2, 65, 66, 67, 34 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If n = 2^s*m with m odd and s > 0 then a(n) = 2*m. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA From Peter Bala, Feb 21 2019: (Start) a(n) = n*gcd(n,2)/gcd(n,2^n). a(2*n) = 2*A000265(2*n); a(2*n+1) = A000265(2*n+1). O.g.f.: x*(1 + 4*x + x^2)/(1 - x^2)^2 - 2*( F(x^2) + F(x^4) + F(x^8) + ... ), where F(x) = x/(1 - x)^2. O.g.f. for reciprocals: Sum_{n >= 1} (1/a(n))*x^n = (3/4)*L(x) - (1/4)*L(-x) + (1/4)*( L(x^2) + L(x^4) + L(x^8) + ... ), where L(x) = log(1/(1 - x)). (End) From Peter Bala, Mar 09 2019: (Start) a(n) = (-1)^(n+1)*Sum_ {d divides n} (-1)^(d+n/d)*phi(d), where phi(n)  = A000010(n) is the Euler totient function. Cf. the identity n = Sum_ {d divides n} phi(d). Cf. A046897 and A321558. O.g.f.: Sum_{n >= 1} phi(n)*x^n/(1 + (-x)^n). (End) MATHEMATICA G[n_] := If[Mod[n, 2] == 0, n/2^(FactorInteger[n][[1, 2]] - 1), n]; Table[G[n], {n, 1, 70}] PROG (PARI) a(n)=n>>max(valuation(n, 2)-1, 0) \\ Charles R Greathouse IV, Jun 28 2015 CROSSREFS Cf. A000265, A022998, A018819, A046897, A321558. Sequence in context: A325814 A325126 A327937 * A080979 A287620 A304491 Adjacent sequences:  A259442 A259443 A259444 * A259446 A259447 A259448 KEYWORD nonn,mult,easy AUTHOR José María Grau Ribas, Jun 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 18:45 EDT 2021. Contains 345402 sequences. (Running on oeis4.)