Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Nov 28 2022 08:28:04
%S 1,2,3,2,5,6,7,2,9,10,11,6,13,14,15,2,17,18,19,10,21,22,23,6,25,26,27,
%T 14,29,30,31,2,33,34,35,18,37,38,39,10,41,42,43,22,45,46,47,6,49,50,
%U 51,26,53,54,55,14,57,58,59,30,61,62,63,2,65,66,67,34
%N Multiplicative with a(n) = n if n is odd and a(2^s)=2.
%C If n = 2^s*m with m odd and s > 0 then a(n) = 2*m.
%H G. C. Greubel, <a href="/A259445/b259445.txt">Table of n, a(n) for n = 1..10000</a>
%H Peter Bala, <a href="/A067856/a067856_1.pdf">A signed Dirichlet product of arithmetical functions</a>
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%F From _Peter Bala_, Feb 21 2019: (Start)
%F a(n) = n*gcd(n,2)/gcd(n,2^n).
%F a(2*n) = 2*A000265(2*n); a(2*n+1) = A000265(2*n+1).
%F O.g.f.: x*(1 + 4*x + x^2)/(1 - x^2)^2 - 2*( F(x^2) + F(x^4) + F(x^8) + ... ), where F(x) = x/(1 - x)^2.
%F O.g.f. for reciprocals: Sum_{n >= 1} (1/a(n))*x^n = (3/4)*L(x) - (1/4)*L(-x) + (1/4)*( L(x^2) + L(x^4) + L(x^8) + ... ), where L(x) = log(1/(1 - x)).
%F (End)
%F From _Peter Bala_, Mar 09 2019: (Start)
%F a(n) = (-1)^(n+1)*Sum_ {d divides n} (-1)^(d+n/d)*phi(d), where phi(n) = A000010(n) is the Euler totient function. Cf. the identity n = Sum_ {d divides n} phi(d). Cf. A046897 and A321558.
%F O.g.f.: Sum_{n >= 1} phi(n)*x^n/(1 + (-x)^n). (End)
%F From _Amiram Eldar_, Nov 28 2022: (Start)
%F Dirichlet g.f.: zeta(s-1)*(1 + 1/2^(s-1) - 2/(2^s-1)).
%F Sum_{k=1..n} a(k) ~ (5/12) * n^2. (End)
%t G[n_] := If[Mod[n, 2] == 0, n/2^(FactorInteger[n][[1, 2]] - 1), n]; Table[G[n], {n, 1, 70}]
%o (PARI) a(n)=n>>max(valuation(n,2)-1,0) \\ _Charles R Greathouse IV_, Jun 28 2015
%Y Cf. A000265, A022998, A018819, A046897, A321558.
%K nonn,mult,easy
%O 1,2
%A _José María Grau Ribas_, Jun 27 2015