login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259369
a(n) = 1 + sigma(n)^3 + sigma(n)^6.
3
3, 757, 4161, 117993, 46873, 2987713, 262657, 11394001, 4829007, 34018057, 2987713, 481912257, 7532281, 191116801, 191116801, 887533473, 34018057, 3518803081, 64008001, 5489105833, 1073774593, 2176828993, 191116801, 46656216001, 887533473, 5489105833
OFFSET
1,1
FORMULA
a(n) = 1 + A000203(n)^3 + A000203(n)^6.
a(n) = A060883(A000203(n)). - Michel Marcus, Jun 25 2015
MAPLE
with(numtheory): A259369:=n->1+sigma(n)^3+sigma(n)^6: seq(A259369(n), n=1..40); # Wesley Ivan Hurt, Jun 29 2015
MATHEMATICA
Table[1 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^6, {n, 10000}]
Table[Cyclotomic[9, DivisorSigma[1, n]], {n, 10000}]
PROG
(PARI) a(n) = polcyclo(9, sigma(n)) \\ Michel Marcus, Jun 25 2015
(Magma) [1+SumOfDivisors(n)^3+ SumOfDivisors(n)^6: n in [1..50]]; // Vincenzo Librandi, Jun 26 2015
CROSSREFS
Cf. A000203 (sum of divisors of n), A060883 (n^6 + n^3 + 1).
Cf. A259370 (indices of primes in this sequence), A259371 (corresponding primes).
Sequence in context: A119264 A307926 A172895 * A259371 A294794 A293252
KEYWORD
easy,nonn
AUTHOR
Robert Price, Jun 25 2015
STATUS
approved