login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259251
a(n) = 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6.
3
7, 1093, 5461, 137257, 55987, 3257437, 299593, 12204241, 5229043, 36012943, 3257437, 499738093, 8108731, 199411801, 199411801, 917087137, 36012943, 3611342281, 67368421, 5622910567, 1108378657, 2238976117, 199411801, 47446779661, 917087137, 5622910567
OFFSET
1,1
FORMULA
a(n) = 1 + A000203(n) + A000203(n)^2 + A000203(n)^3 + A000203(n)^4 + A000203(n)^5 + A000203(n)^6.
a(n) = A053716(A000203(n)). - Michel Marcus, Jun 23 2015
MAPLE
with(numtheory): A259251:=n->1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6: seq(A259251(n), n=1..50); # Wesley Ivan Hurt, Jul 09 2015
MATHEMATICA
Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4 + DivisorSigma[1, n]^5 + DivisorSigma[1, n]^6, {n, 10000}]
Table[Cyclotomic[7, DivisorSigma[1, n]], {n, 10000}]
f[n_] := Total[DivisorSigma[1, n]^Range[0, 6]]; Array[f, 26] (* Robert G. Wilson v *)
PROG
(PARI) vector(30, n, polcyclo(7, sigma(n))) \\ Michel Marcus, Jun 23 2015
(Magma) [1 + SumOfDivisors(n) + SumOfDivisors(n)^2 + SumOfDivisors(n)^3 + SumOfDivisors(n)^4 + SumOfDivisors(n)^5 + SumOfDivisors(n)^6: n in [1..50]]; // Vincenzo Librandi, Jun 26 2015
CROSSREFS
Cf. A000203 (sum of divisors of n).
Cf. A259252 (indices of primes in this sequence), A259253 (corresponding primes).
Sequence in context: A139781 A101072 A203583 * A259253 A203871 A373037
KEYWORD
easy,nonn
AUTHOR
Robert Price, Jun 22 2015
STATUS
approved