login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259252
Numbers n such that 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6 is prime.
3
1, 2, 5, 9, 13, 16, 24, 25, 27, 28, 30, 37, 38, 39, 46, 50, 51, 55, 57, 59, 67, 68, 71, 79, 80, 82, 88, 93, 99, 105, 108, 118, 122, 125, 127, 133, 141, 145, 148, 152, 155, 157, 161, 162, 164, 179, 189, 191, 194, 196, 215, 228, 232, 237, 242, 247, 263, 281
OFFSET
1,2
MAPLE
with(numtheory): A259252:=n->`if`(isprime(1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6), n, NULL): seq(A259252(n), n=1..500); # Wesley Ivan Hurt, Jul 09 2015
MATHEMATICA
Select[Range[10000], PrimeQ[ 1 + DivisorSigma[1, #] + DivisorSigma[1, #]^2 + DivisorSigma[1, #]^3 + DivisorSigma[1, #]^4 + DivisorSigma[1, #]^5 + DivisorSigma[1, #]^6] &]
Select[Range[10000], PrimeQ[ Cyclotomic[7, DivisorSigma[1, #]]] &]
PROG
(PARI) isok(n) = isprime(polcyclo(7, sigma(n))); \\ Michel Marcus, Jun 23 2015
(Magma) [n: n in [1..500] | IsPrime(1 + DivisorSigma(1, n) + DivisorSigma(1, n)^2 + DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4 + DivisorSigma(1, n)^5+ DivisorSigma(1, n)^6)]; // Vincenzo Librandi, Jun 24 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert Price, Jun 22 2015
STATUS
approved