

A259199


Divisorial primes ending with digit 1.


3



101, 34188010001, 254116810001, 283982410001, 2601446410001, 13308633610001, 39691260010001, 52361143210001, 58873394410001, 88828740010001, 155274028810001, 451651754410001, 1004693469610001, 1236570192010001, 2100654722410001, 2886794695210001, 3353811326410001
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A divisorial prime is a prime p of the form p = 1 + Product_{dk} d for some k (see A007955 and A258455).
Sequence lists divisorial primes p of the form h*10^m + 1 (h, m are positive integers).
Sequence of numbers sqrt(a(n)  1): 10, 184900, 504100, 532900, 1612900, 3648100, 6300100, 7236100, 7672900, ...
Sequence of numbers k such that 1 + Product_{dk} d is a divisorial prime ending with digit 1: 10, 430, 510, 680, 710, 730, ...


LINKS



FORMULA



EXAMPLE

Prime 34188010001 is in sequence because 34188010000 is the product of divisors of 430.
1 + the product of divisors of 3000 = 43046721000000000000000000000000000000000000000000000001 is also a term of this sequence.


PROG

(Magma) Set(Sort([&*(Divisors(n))+1: n in [1..10000]  IsSquare(&*(Divisors(n))) and IsPrime(&*(Divisors(n))+1) and (&*(Divisors(n))) mod 10 eq 0]))


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



