The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258455 Divisorial primes: primes p of the form p = 1 + Product_{d|k} d for some k. 9
 2, 3, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 98597, 106277, 148997, 217157, 331777, 401957, 454277, 1196837, 1378277, 1674437, 1705637, 1833317, 1865957, 2390117, 2735717, 3118757, 3147077, 3587237, 3865157, 4104677, 4519877, 4726277, 5410277, 6728837 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p of the form p = A007955(k) + 1 for some k. This sequence is a sorted version of A118370. Corresponding values of k are in A118369. Conjectures: (1) if 1+ Product_{d|k} d for k > 2 is a prime p, then p-1 is a square. (2) except for n = 2, a(n) - 1 are squares. (3) subsequence of A062459 (primes of form x^2 + mu(x)). From Robert Israel, Jun 08 2015: (Start) The first n > 4 for which a(n) does not end in 7 is a(918) = 34188010001. Statements (1) and (2) are true. Note that if k = p_1^(a_1) ... p_m^(a_m) is the prime factorization of k, then A007955(k) = p_1^(a_1*M/2) ... p_m^(a_m*M/2) where M = (a_1+1)*...*(a_m+1). Now if M has any odd factor r > 1, A007955(k) = x^r for some x > 1 and then p = A007955(k)+1 is divisible by x+1. So for p to be prime, M must be a power of 2. Now if A007955(k) is not a square, we need M/2 to be odd, so M = 2. That can only happen if m=1 and a_1=1. For p to be odd we need k to be even, so this means p_1 = 1, and then k=2. (End) Union of prime 3 (where A007955(3-1) is not a square), A258896 (primes p such that p-1 = A007955(sqrt(p-1)) and A258897 (primes p such that p-1 = A007955(k) for some k < sqrt(p-1)). - Jaroslav Krizek, Jun 14 2015 Contrary to the above, this is not a subsequence of A062459: 24^4+1 = 331777 is in this sequence but not A062459. - Charles R Greathouse IV, Sep 22 2015 LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 EXAMPLE The prime 37 is in sequence because there is n = 6 with divisors 1, 2, 3, 6 such that 6*3*2*1 + 1 = 37. MAPLE N:= 10^8: # to get all terms <= N K:= floor(sqrt(N)): sort(convert(select(t -> t <= N and isprime(t), {2, seq(convert(numtheory:-divisors(k), `*`)+1, k=2..K, 2)}), list)); # Robert Israel, Jun 08 2015 MATHEMATICA terms = 35; n0 = 1000; Clear[f]; f[nmax_] := f[nmax] = Reap[For[n = 1, n <= nmax, n++, If[PrimeQ[p = Times @@ Divisors[n] + 1], Sow[p]]]][[2, 1]] // Sort // Take[#, terms]&; f[n0]; f[nmax = 2*n0]; While[f[nmax] != f[nmax/2], Print[nmax]; nmax = 2*nmax]; f[nmax] (* Jean-François Alcover, May 31 2015 *) Take[Sort[Select[Table[Times@@Divisors[n]+1, {n, 3000}], PrimeQ]], 40] (* Harvey P. Dale, Apr 18 2018 *) PROG (Magma) Set(Sort([&*(Divisors(n))+1: n in [1..1000000] | IsPrime(&*(Divisors(n))+1)])) (PARI) list(lim)=my(v=List()); lim\=1; for(n=1, sqrtint(lim-1), my(d=divisors(n), t=prod(i=2, #d, d[i])+1); if(t<=lim && isprime(t), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jun 08 2015 CROSSREFS Cf. A007955, A048943, A118369, A118370, A174895. Sequence in context: A216145 A109748 A062459 * A118370 A189027 A061576 Adjacent sequences: A258452 A258453 A258454 * A258456 A258457 A258458 KEYWORD nonn AUTHOR Jaroslav Krizek, May 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 09:53 EDT 2024. Contains 373407 sequences. (Running on oeis4.)