login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062459
Primes of form n^2 + mu(n), where mu is A008683.
2
2, 3, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 44101, 98597, 106277, 148997, 217157, 324901, 401957, 454277, 476101, 509797, 828101, 864901, 933157, 1196837, 1378277, 1664101, 1674437, 1705637, 1833317, 1865957, 1988101
OFFSET
1,1
COMMENTS
All terms except for 3 are of the form n^2 + 1 where mu(n) = 1, since n^2 or n^2-1 can't be prime except for n=2. - Robert Israel, Oct 09 2015
LINKS
MAPLE
R:= select(t -> numtheory:-mobius(t)=1, [$3..10000]):
2, 3, op(select(isprime, map(t-> t^2+1, R))); # Robert Israel, Oct 09 2015
MATHEMATICA
Select[Table[m^2+MoebiusMu[m], {m, 0, 1500}], PrimeQ] (* Harvey P. Dale, Feb 08 2011 *)
PROG
(PARI) j=[]; for(n=1, 3000, x=n^2+moebius(n); if(isprime(x), j=concat(j, x))); j
(PARI) n=0; for (m=1, 10^5, x=m^2 + moebius(m); if (isprime(x), write("b062459.txt", n++, " ", x); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009
(PARI) list(lim)=my(v=List([2]), t); forstep(n=2, sqrtint(lim\1), 4, if(isprime(t=n^2+moebius(n)), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Sep 22 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Jul 26 2001
STATUS
approved