login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259025
Numbers k such that k is the average of four consecutive primes k-11, k-1, k+1 and k+11.
2
420, 1050, 2028, 2730, 3582, 4230, 4242, 4272, 4338, 6090, 6132, 6690, 6792, 8220, 11058, 11160, 11970, 12252, 15288, 19542, 19698, 21588, 21600, 26892, 27540, 28098, 28308, 29400, 30840, 30870, 31080, 32412, 42072, 45318, 47808, 48120
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A014574 (average of twin prime pairs) and A256753.
The terms ending in 0 are congruent to 0 mod 30.
The terms ending in 2 and 8 are congruent to 12 mod 30 and 18 mod 30 respectively.
LINKS
Eric Weisstein's World of Mathematics, Twin Primes
FORMULA
a(n) = A052376(n) + 11. - Robert G. Wilson v, Jul 15 2015
EXAMPLE
For n=420: 409, 419, 421, 431 are consecutive primes (n-11=409, n-1=419, n+1=421, n+11=431).
For n=1050: 1039, 1049, 1051, 1061 are consecutive primes (n-11=1039, n-1=1049, n+1=1051, n+11=1061).
MATHEMATICA
{p, q, r, s} = {2, 3, 5, 7}; lst = {}; While[p < 50000, If[ Differences[{p, q, r, s}] == {10, 2, 10}, AppendTo[lst, q + 1]]; {p, q, r, s} = {q, r, s, NextPrime@ s}]; lst (* Robert G. Wilson v, Jul 15 2015 *)
Mean/@Select[Partition[Prime[Range[5000]], 4, 1], Differences[#]=={10, 2, 10}&] (* Harvey P. Dale, Sep 11 2019 *)
PROG
(Python)
from sympy import isprime, prevprime, nextprime
for i in range(0, 50001, 2):
if isprime(i-1) and isprime(i+1):
if prevprime(i-1) == i-11 and nextprime(i+1) == i+11 : print (i, end=', ')
(PARI) is(n)=n%6==0&&isprime(n-11)&&isprime(n-1)&&isprime(n+1)&&isprime(n+11)&&!isprime(n-7)&&!isprime(n-5)&&!isprime(n+5)&&!isprime(n+7) \\ Charles R Greathouse IV, Jul 17 2015
CROSSREFS
Cf. A052376, A077800 (twin primes), A014574, A249674 (30n), A256753.
Sequence in context: A147775 A169825 A135196 * A281210 A235233 A251084
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Jun 16 2015
STATUS
approved