login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235233
Number of (n+1) X (2+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 6, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1
420, 1288, 3688, 11728, 34916, 113940, 348876, 1158552, 3626376, 12193672, 38853396, 131871756, 426383532, 1457769280, 4770857720, 16406943392, 54238894212, 187427003188, 624847358508, 2167920197880, 7278838832680
OFFSET
1,1
COMMENTS
Column 2 of A235239.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) +47*a(n-2) -331*a(n-3) -846*a(n-4) +7735*a(n-5) +6531*a(n-6) -99876*a(n-7) -4062*a(n-8) +780931*a(n-9) -294777*a(n-10) -3829232*a(n-11) +2187642*a(n-12) +11922251*a(n-13) -7106223*a(n-14) -23840076*a(n-15) +11482195*a(n-16) +31200479*a(n-17) -9197246*a(n-18) -26295345*a(n-19) +2967600*a(n-20) +13895070*a(n-21) +468804*a(n-22) -4403844*a(n-23) -634896*a(n-24) +759672*a(n-25) +171504*a(n-26) -54432*a(n-27) -15552*a(n-28).
EXAMPLE
Some solutions for n=4:
3 5 4 0 2 0 3 2 6 4 2 5 3 0 3 4 6 4 5 3 4
5 1 6 4 0 4 0 5 3 0 4 1 2 5 2 5 1 5 2 6 1
2 4 3 3 5 3 2 1 5 5 3 6 5 2 5 4 6 4 5 3 4
5 1 6 6 2 6 1 6 4 0 4 1 0 3 0 6 2 6 1 5 0
3 5 4 3 5 3 2 1 5 2 0 3 4 1 4 2 4 2 5 3 4
CROSSREFS
Sequence in context: A135196 A259025 A281210 * A251084 A250383 A145678
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 05 2014
STATUS
approved