login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145678
a(n) = 441*n^2 - 21.
2
420, 1743, 3948, 7035, 11004, 15855, 21588, 28203, 35700, 44079, 53340, 63483, 74508, 86415, 99204, 112875, 127428, 142863, 159180, 176379, 194460, 213423, 233268, 253995, 275604, 298095, 321468, 345723, 370860, 396879, 423780, 451563
OFFSET
1,1
COMMENTS
The identity (42*n^2 - 1)^2 - (441*n^2 - 21)*(2*n)^2 = 1 can be written as A158626(n)^2 - a(n)*A005843(n)^2 = 1.
FORMULA
From Vincenzo Librandi, Feb 12 2012: (Start)
G.f.: -21*x*(20 + 23*x - x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(21))*Pi/sqrt(21))/42.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(21))*Pi/sqrt(21) - 1)/42. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {420, 1743, 3948}, 50] (* Vincenzo Librandi, Feb 12 2012 *)
PROG
(Magma) I:=[420, 1743, 3948]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 12 2012
(PARI) for(n=1, 40, print1(441*n^2-21", ")); \\ Vincenzo Librandi, Feb 12 2012
CROSSREFS
Sequence in context: A235233 A251084 A250383 * A160372 A171259 A061125
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 23 2009
STATUS
approved