|
|
A145679
|
|
Lower limit of backward value of 2^n and n!.
|
|
3
|
|
|
2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For n!, omitting the trailing sequence zeros. - Simon Plouffe, Mar 05 2017
The terms are deduced from sequence A023415.
The sum of constants in A145679 and A023415 is conjectured to be 11 exactly.
|
|
LINKS
|
Table of n, a(n) for n=1..88.
|
|
PROG
|
(Python)
# lower limit of backward value of 2^n
a, i=2, 0; x=a
while 1:
i+=1; print x, ', ' ,
if a%2**(i+1) == 0: x=0
else: x=1; a+=10**i
# Cezary Glowacz, Mar 11 2017
|
|
CROSSREFS
|
Cf. A000079, A004154, A023415, A158624, A158625.
Sequence in context: A089311 A086784 A104162 * A007273 A016319 A342531
Adjacent sequences: A145676 A145677 A145678 * A145680 A145681 A145682
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Simon Plouffe, Mar 23 2009
|
|
EXTENSIONS
|
More terms from Cezary Glowacz, Feb 26 2017
More terms from Jinyuan Wang, Mar 01 2020
|
|
STATUS
|
approved
|
|
|
|