login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158626
a(n) = 42*n^2 - 1.
2
41, 167, 377, 671, 1049, 1511, 2057, 2687, 3401, 4199, 5081, 6047, 7097, 8231, 9449, 10751, 12137, 13607, 15161, 16799, 18521, 20327, 22217, 24191, 26249, 28391, 30617, 32927, 35321, 37799, 40361, 43007, 45737, 48551, 51449, 54431, 57497, 60647, 63881, 67199, 70601
OFFSET
1,1
COMMENTS
The identity (42*n^2-1)^2 - (441*n^2-21)*(2*n)^2 = 1 can be written as a(n)^2-A145678(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 16 2012
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: x*(-41-44*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(42))*Pi/sqrt(42))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(42))*Pi/sqrt(42) - 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {41, 167, 377}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
PROG
(Magma) I:=[41, 167, 377]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
(PARI) for(n=1, 40, print1(42*n^2-1", ")); \\ Vincenzo Librandi, Feb 16 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 23 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 26 2009
A-number updated by R. J. Mathar, Oct 16 2009
STATUS
approved