login
A257913
Pandigital numbers reordered so that the numbers A050278(n)/(2^k*3^m), where 2^k||A050278(n) and 3^m||A050278(n), appear in nondecreasing order.
1
2845310976, 1379524608, 1745960832, 6398410752, 3076521984, 5892341760, 2305179648, 3718250496, 1578369024, 9145036728, 5392687104, 1356709824, 1607952384, 3215904768, 1485029376, 5638470912, 5619843072, 6185973240, 5234098176, 7246198035, 1072963584
OFFSET
1,1
COMMENTS
If two such numbers A050278(n_1)/(2^k_1*3^m_1) and A050278(n_2)/(2^k_2*3^m_2) are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(2)/(2^13*3^7)=a(3)/(2^7*3^11)= 77. There are 210189 such pairs.
Note that, a(1) = 2845310976 means that min(A050278(n)/(2^k*3^m)) = 2845310976/(2^19*3^4) = 67.
CROSSREFS
KEYWORD
nonn,base,fini
AUTHOR
STATUS
approved