login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257901
Pandigital numbers reordered so that the numbers A050278(n)/5^k, where 5^k||A050278(n), are in nondecreasing order.
3
1304296875, 1342968750, 1437890625, 1824609375, 9123046875, 1923046875, 3104296875, 3142968750, 3649218750, 4137890625, 4862109375, 1034296875, 1269843750, 6349218750, 1284609375, 1293046875, 1347890625, 1432968750, 8124609375, 1629843750, 8462109375
OFFSET
1,1
COMMENTS
If two such numbers A050278(n_1)/5^k_1 and A050278(n_2)/5^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(4)/5^8=a(5)/5^9=4671.
There are 46080 such pairs.
FORMULA
min(A050278(n)/5^k) = 1304296875/5^8 = 3339.
PROG
(Python)
from itertools import permutations
l = []
for d in permutations('0123456789', 10):
....if d[0] != '0':
........d2 = int(''.join(d))
........d = d2
........r = d2 % 5
........while not r:
............d2, r = divmod(d2, 5)
........l.append((d2, d))
l.sort()
A257901_list = [b for a, b in l] # Chai Wah Wu, May 24 2015
CROSSREFS
KEYWORD
nonn,base,fini
AUTHOR
STATUS
approved